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2.1 SUMMARY
A new bathymetric model with spatially-explicit uncertainty estimates was developed for the New York study 
area (Figure 1.1). The model builds on previous predictive bathymetric modeling approaches in the region (e.g., 
Calder, 2006), provides a continuous gridded bathymetric surface for the study area, and allows users to view 
and explore spatial variation in the vertical accuracy of depth predictions. The spatial resolution of the model 
is identical to the National Oceanic and Atmospheric 
Administration’s (NOAA) Coastal Relief Model (CRM; 
horizontal resolution approximately 83.8 m) in the 
study area and was built from the same database of 
hydrographic survey points. Unlike the CRM, the new 
geostatistical model provides estimates of prediction 
certainty, which can be used to prioritize locations 
for new bathymetric surveys and better understand 
the reliability of depth predictions and derived spatial 
layers (e.g., benthic habitats, positions of depth 
contours). 

2.2 BACKGROUND
Bathymetry (also called seafloor topography) is 
an important base environmental layer for spatial 
planning since it influences both planning of human 
activities (e.g., construction, shipping) and many 
physical, chemical and ecological processes. For 
instance, reliable bathymetric information can 
simultaneously improve habitat conservation and 
energy development by supporting the identification 
of:

• Unique or vulnerable benthic habitats 
• Distributions of rare or endangered species 
• Efficient corridors for transmission lines
• Suitable sites for turbine platforms, and 
• Potential construction hazards

Bathymetry can be measured by a range of instruments, which determine the precision, spatial resolution, 
extent and cost of bathymetric information and nautical charts. Until the latter half of the 20th century, lead 
lines dropped from a ship were used to estimate depths (Calder, 2006) and were compiled on charts to give 
a coarse-scale representation of the seafloor and identify navigation hazards. Lead lines were eventually 
replaced by more accurate vertical beam echosounders (VBES) and subsequently by multibeam echosounders 
(MBES). Modern MBES can collect millions of precise soundings efficiently and quickly, making possible high-
resolution bathymetric maps that reveal fine-scale features of the seafloor (Calder, 2006). Horizontal positioning 
technologies have also advanced over the years from sextant-based navigation to modern GPS.

When combined with backscatter information and validation samples, MBES data offers an unprecedented 
view of the composition and morphology of the seafloor at multiple spatial scales (Kostylev et al., 2001; Gardner 
et al., 2003). The States of Oregon and California recently collected new data to take advantage of insights 
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Image 2.1. An example of a bathymetric surface in the New York 
Bight, showing the change in depth with distance from shore and the 
complexity of the seafloor across the shelf. The Hudson Shelf Valley 
is prominently visible in the center of the model as the area of darker 
blue extending from New York harbor (top left) towards the shelf edge 
(bottom right). Coastal managers and engineers use bathymetric
surfaces to assess shipping lanes, identify fish habitats, lay undersea 
cables and find sand and gravel resources. The bathymetric surface 
shown here is the the NOAA Coastal Relief Model (CRM), draped over 
a derived hillshade layer to highlight bathymetric variation. Terrestrial 
imagery is the ArcGIS Online World User Imagery layer (ESRI Online).
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Oregon Territorial Sea Plan and California Marine Life Protection Act Initiative. On the East Coast, fewer states 
have comprehensive MBES coverage; this may be a reflection of the increased costs involved in surveying 
comparatively wide, shallow continental shelves.

About 20% of the New York planning area is covered by MBES surveys (Figure 2.1) which have been collected 
by the United States Geological Survey (USGS), NOAA and the Woods Hole Oceanographic Institution (Schwab 
et al., 1997a and 1997b; Butman et al., 1998; Goff et al., 1999; Butman et al., 2006). The corresponding 
data have helped researchers map benthic habitats and identify physical features on the seafloor within the 
footprints of surveys. 

Unfortunately, the incomplete distribution of multibeam surveys limits their usefulness for understanding 
the relative distribution of habitats, features, processes and species over the entire planning area, a critical 
component of integrated marine spatial planning. The U.S. Coastal Relief Model developed by the National 
Geophysical Data Center (NGDC; http://www.ngdc.noaa.gov/mgg/coastal/model.html) offers a 3-arc second 
continuous bathymetric model that covers the majority of the study area (including all of the continental shelf 
and slope). The CRM is derived from the largest single compilation of bathymetric soundings for US coastal 
waters and has been used effectively to inform spatial planning on the East Coast as part of the Massachusetts 
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Figure 2.1. Spatial extent of selected multibeam and sidescan sonar surveys in the study area. Survey boundaries are overlaid on 
bathymetry data from the Coastal Relief Model blended with the ETOPO1 Global Relief Model (Amante and Eakins 2009).
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m horizontal resolution of the CRM is still sufficient to resolve general features of interest for marine spatial 
planning (e.g., canyons, ridges, sand waves, bathymetric contours). 

The portion of the CRM that overlaps the New York planning area was produced in 1999 and is a compilation of 
historical hydrographic surveys, collected using VBES and MBES from various data sources, including NOAA, 
USGS, the U.S. Army Corps of Engineers, and various academic institutions. Although compiled surveys are 
brought together under a common spatial framework, they possess different spatial footprints and resolutions, 
and were collected using different instruments. Newer surveys commonly overlap, adjoin and supersede older 
surveys. 

Generally, the CRM is used in resource management applications assuming the depth measurements and 
predictions to be accurate, but significant uncertainty in model depth estimates arises from measurement error 
in hydrographic surveys, methods used to interpolate between survey points and data processing (discussed 
in detail in Calder, 2006 and references therein). These errors are variable over the study area (Figure 2.2) 
due to various factors, including survey age, processing guidelines, and distances amongst soundings. Since 
bathymetric errors in the CRM are not quantified, users cannot know whether depth predictions at a given 
location are likely to deviate from the true value by a few centimeters or hundreds of meters. Disregarding 
uncertainty might be acceptable for some analyses conducted at coarse spatial resolutions, but is problematic 
for finer resolution analyses and when precise measurements are needed. Knowing where bathymetric 
predictions are precise and where they are not provides managers with information to define and manage risk 
associated with decisions relying on bathymetry or derived products (e.g., defining benthic habitats, estimating 
construction costs, placing shipping lanes).

2.3 METHODS
2.3.1 General Modeling Approach 
A geostatistical modeling approach was used to predict a continuous, gridded bathymetric surface from scattered 
sounding points and to generate corresponding spatially-explicit uncertainty estimates. Geostatistical methods 
are based on the premise that neighboring samples are more similar than samples farther away (Tobler, 1970), 
a phenomenon known as spatial autocorrelation. Spatial autocorrelation can be detected, quantified and 
modeled by semivariogram analysis, and used to make predictions at locations that have not been measured 

Figure 2.2. (a) Most recent survey year for soundings within 1 km rectangular neighborhoods. Survey year classes generally correspond 
with the evolution of horizontal positioning and vertical sounding technologies. More recent soundings tend to be more precise. (b) The 
number of bathymetric soundings per square kilometer. The shelf edge corresponds to the 200 m depth contour.
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ry (Cressie, 1993; Chiles and Delfiner, 1999). In addition, the same spatial model used to develop predictions can 
be used to model uncertainty (i.e., expected precision) of predictions. 

The geostatistical modeling approach used here follows Cressie (1993), where estimates of depth for a given 
location, Z(x,y), are modeled as a linear combination (sum) of components representing a deterministic mean 
trend, µ(x,y), a spatially structured random process, δ(x,y), and non-spatially structured error, ε. 

		  Z(x,y) = µ(x,y) + δ(x,y) + ε					     (Equation 2.1)

Equation 2.1 defines the workflow used to arrive at Z(x,y). The deterministic mean trend and spatially structured 
random process with error term are modeled separately and then combined by summation (see Figure 2.3 
for schematic representation of work flow). The deterministic mean trend, µ(x,y), is estimated using a suitable 
smoothing function and residuals of original data from this smoothing function are computed at the data 
positions by subtracting the trend prediction from the observed data value. The spatially structured random 
process, δ(x,y), and error term, ε, are then estimated by fitting a suitable semivariogram model to the empirical 
semivariogram of the residuals. The error term is defined by the semivariogram nugget and represents error 
that is not spatially correlated, which includes both measurement error and variability occurring at spatial 
scales shorter than the sampling resolution (Cressie, 1993). 

Map and examine raw data

Pre-process, filter, 
transform data

Model deterministic trend

Predict mean values Predict uncertaintyPredict mean values Predict uncertainty

Remove trend from data

Model spatial autocorrelation 
using semivariogram

Predict mean values Predict uncertainty

Ordinary kriging of residuals 
using semivariogram model

Combine trend and
kriging outputs

Predict mean values Predict uncertainty

Assess validity of model 
predictions and uncertainties

Figure 2.3. General workflow describing the geostatistical approach used to develop the predictive model for bathymetry (see sections 
2.3.3 and 2.3.4 for a more detailed description of the methods). 
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Chiles and Delfiner, 1999). The accuracy of model predictions and uncertainty bounds depends to varying 
degrees on these assumptions being met. Thus, an important part of any geostatistical analysis is model 
validation, which is usually done by cross-validation, a process in which some data are left out for purposes of 
model fitting and model predictions are tested against those data. Model predictions can also be tested against 
high-precision “ground-truth” datasets where such datasets are available. We use both methods to validate 
model predictions in this chapter (see Section 2.3.4).

2.3.2 Data Acquisition and Preparation 
Raw Sounding Data
To develop a new geostatistical bathymetric model for the NY Bight, all available National Ocean Science 
(NOS) Hydrographic Survey Data overlapping the study area were downloaded from the National Geophysical 
Data Center Hydrographic Survey Database (http://www.ngdc.noaa.gov/mgg/bathymetry/hydro.html) on April 
21, 2011. Survey measurements and metadata were extracted from raw HYD93 formatted files and exported 
into plain ASCII text tabular files using custom parsing scripts. Depths are represented as positive numbers 
with increasing depth below sea level defined by the Mean Lower Low Water (MLLW) vertical datum. Sounding 
data were merged with survey metadata, so that information detailing when and how each sounding was 
collected was retained. Sounding locations, originally in decimal degrees (NAD83 datum), were projected into 
a Universal Transverse Mercator projection (UTM 18N), since subsequent processing requires measurement 
of point-to-point distances in a Cartesian coordinate system. UTM 18N has its central meridian at 75ºW and 
thus allows calculation of distances in our study area with negligible distortion relative to grid resolution (83.8 
m).

Hydrographic soundings in the study area come from a multitude of surveys distributed between 1887 and 2004. 
Surveys used an assortment of positioning and sounding technologies, resulting in a patchwork of overlapping 
soundings collected with variable sample spacing and different precisions (Figure 2.2). In addition, survey data 
was processed using varying methods which created varying post-processing errors (see Calder, 2006 for a 
full discussion). These errors can propagate to the final model creating distortions that do not correspond to 
changes on the seafloor. While steps have been taken to partially correct for and reduce the impact of these 
data quality issues, it is important to understand that they cannot be entirely eliminated. No bathymetric model 
based on historical hydrographic sounding data will be completely free from such considerations.

In general, the vast majority of soundings were retained to maximize data density. However, some soundings 
were corrected or eliminated prior to modeling. First, based on Calder (2006), we applied a +1.48 m correction 
to all soundings collected by lead line to correct for the observed bias of lead line soundings compared to 
multibeam sonar measurements. Second, lead line and VBES surveys were identified that showed evidence of 
quantization due to rounding to the nearest whole fathom (resulting in an error of up to 1.8 m). Data from these 
surveys were eliminated when they were located within the footprint of more accurate surveys (i.e., surveys 
that did not exhibit quantization). Survey footprints were hand digitized at 1:50,000 in ArcGIS 10 (ESRI, 2011). 
Different types of rounding and conversions created surveys with varying degrees of quantization, but only 
those surveys with the most severe fathom-rounding quantization of 1.8 m were eliminated from analysis, and 
those only when more recent information was present. Other types of quantization are expected to result in 
errors less than 1 m. Other sources of error in raw soundings, including un-accounted for changes in vertical 
and tidal datums, are expected to be small (on the order of 10’s of centimeters) and are discussed in detail in 
Calder (2006).

Depth Stratification
The resulting hydrographic sounding database was divided into four strata based on depth thresholds (Table 
2.1). Thresholds were chosen based on depth ranges that correspond to different maximum uncertainty 
specifications under International Hydrographic Organization (IHO) standards (S.44 Order 1 and 2, IHO 1998) 
and on coarse-scale changes in geomorphology (e.g., the continental shelf break). Neighboring strata overlap 
slightly to facilitate merging of outputs from individual strata into a continuous surface. 
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Transformation
Prior to statistical modeling, depth values were transformed using the following logarithmic function to normalize 
error distributions:

		  Ztransform = log(Z*b+a)						      (Equation 2.2)

where Z is depth in meters (with positive numbers representing depth below sea surface) and the transformation 
parameters a and b are taken from the appropriate error model for each depth stratum identified by IHO 
standards (a = 0.5 m, b = 0.013 when Z < 100 m [IHO S.44 Order 1] and a = 1.0 m, b = 0.023 when Z >= 100 
m [IHO S.44 Order 2]) (IHO, 1998). This transformation was based on a standard bathymetric error model 
formulation (IHO, 1998; Calder, 2006), and improves homogeneity of conditional error variances within local 
regression and kriging neighborhoods, a desirable statistical property.  

2.3.3 Development of the Bathymetric Model
The deterministic mean bathymetric trend surface was estimated using LOESS, a semi-parametric local 
regression technique (Cleveland and Devlin, 1988). LOESS estimates a smooth trend surface using weighted 
least-squares regression in local neighborhoods defined by a fixed number of points closest to each prediction 
location (the span, measured as a percentage of the total number of data points). Specifically, quadratic 
LOESS was used with a span of 1%, corresponding to an average neighborhood width of between 3 and 12 
km depending on point density. 

LOESS was implemented in Matlab version 7.13 (R2011b) with the Curve Fitting toolbox (The MathWorks Inc., 
Natick, MA). The standard Matlab toolbox function (curvefit/curvefit/+curvefit/LowessFit.m) was modified to 
reduce processing times and increase matrix stability. Execution speed was improved by using k-dimensional 
search trees (KD-Tree for MATLAB, Tagliasacchi, 2011) to identify and sort soundings in each local neighborhood. 
Under certain conditions local regression methods such as LOESS can exhibit instability due to limits on the 
precision of matrix calculations. X and Y coordinates were centered and re-scaled to minimize the possibility 
of matrix stability problems. The condition number of each local regression design matrix was also evaluated 
to diagnose areas where matrix precision might affect the accuracy of regression fits. 

Local regression matrix stability was problematic when points that were very close to each other had very 
different values, which occasionally occurred in areas of high sounding density and resulted in gaps in the 
LOESS prediction surface. To eliminate gaps, soundings within a horizontal distance of ± 10 cm were identified, 
grouped and then dispersed with a small random nudge. Coordinates for the first occurrence of a sounding in 
a group were retained and subsequent coordinates were shifted by adding a uniform random number in the 
range ± (0.5,1.5 m). Displacements were only accepted if they did not create conflicts (within 10 cm) with other 
soundings. A total of 700 soundings were modified (<0.03% of all data). Although this dispersion adds some 
positional error to each sounding, the displacement is negligible in relation to other sources of positioning error 
caused by geographic positioning systems or ship heave/pitch/roll.

A similar displacement procedure was applied to soundings that fell within 10 cm of the prediction grid 
coordinates. The purpose of this was to ensure that measurement and micro-scale error were filtered out of 
the prediction surface, because at the precise locations of original data, the kriging prediction surface exhibits 

Table 2.1. Depths used to stratify hydrographic soundings and the corresponding number of soundings within each stratum.

DEPTH STRATUM NUMBER OF SOUNDINGS 
(EXCLUDING OVERLAP)

PERCENTAGE OF 
SOUNDINGS

ADDITIONAL 
SOUNDINGS 

FROM OVERLAP

PERCENTAGE 
OF SOUNDINGS 
FROM OVERLAP

0-30 m 2,077,055 83.9% 0 0%
30-100 m 337,238 13.6% 176,843 34.4%
100-200 m 21,932 0.9% 9,931 31.2%
200-2,000 m 40,196 1.6% 3,517 8.0%
Total 2,476,421 100% 190,291 7.1%
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resampling technique proposed for filtering noisy bathymetric data by Goff et al. (2006).

The parametric standard error of the mean trend was estimated using a Monte Carlo approach. Specifically, 
the approximation method of Durban, et al. (1999) was used to estimate the variance-covariance matrix of the 

estimated local regression coefficients, Var(β̂ ) . The scale of the variance-covariance matrix was estimated as 
the sum of squares of the residuals for the whole model (i.e., the residuals of the original data from the LOESS 
fit at all data points), divided by (N – λ), where N is the number of observations and λ is the effective number 
of parameters, estimated as, λ = 2*(1+[N/(N*span)]).

Regression coefficient vectors were simulated by 1,000 draws from a multivariate normal distribution defined 

by mean vector β̂  and covariance matrix Var(β̂ ) , and the LOESS prediction was re-calculated for each 
simulated regression coefficient vector. The standard error was estimated as the standard deviation of the 
simulated LOESS predictions at each location. The condition number of the design matrix of each local 
regression was also recorded as an additional diagnostic measure.

Residuals were obtained by subtracting the LOESS trend surface prediction at each data location from the 
observed data value. Semivariograms of residuals were then calculated and modeled in ArcGIS 10 with 
the Geostatistical Analyst extension (ESRI, 2011). A separate anisotropic semivariogram model was fit 
independently for each depth stratum (Figure 2.4, Table 2.2). The nugget effect was adjusted manually based 
on visual inspection and prior expectations from measurement error models (see below). The rest of the model 
parameters, including anisotropy ranges and direction, were fit automatically using non-linear weighted least-
squares (ESRI, 2011). 

Figure 2.4. Estimated semivariograms of residuals and fitted semivariogram models for each depth stratum. (a) 0-30 m, (b) 30-100
m, (c) 100-200 m, (d) 200-2,000 m. Red dots represent sample semivariance values, blue crosses represent averaged semivariance
values, solid blue lines represent directional semivariogram model fits.
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Nugget selection was guided by a Monte Carlo simulation of measurement error expected for each depth 
stratum based on maximum measurement error models defined by IHO standards (IHO S.44 Orders 1 and 2). 
We simulated depth observations with measurement error across the depth range of each stratum (n=100,000 
points), log-transformed the simulated depths using Equation 2.2, calculated residuals from the recorded 
depth, and calculated the depth-averaged measurement error for each stratum in the log-transformed space. 
This served as a lower bound on the nugget for semivariogram fitting, which was then adjusted higher if 
necessary based on the best fit to empirical semivariogram plots. The rationale for this approach is that the 
minimum value of the nugget is equal to measurement error. Small-scale spatial features not resolved by the 
sample spacing (so-called “micro-scale structures”) can add to this error and raise the value of the nugget, but 
not lower it. 

To perform ordinary kriging of residuals, semivariogram model parameters fitted in ArcGIS 10 (ESRI, 2011) 
were input into the KT3D module of GSLIB (Geostatistical Software Library, Deutsch and Journel, 1992). 
KT3D was used instead of ArcGIS 10 because of the 
prohibitively slow computational speed of the ArcGIS 
kriging implementation. KT3D was run with ordinary 
kriging, 8-sector search neighborhoods, a minimum 
search radius necessary for a gap-free kriging 
prediction, and a maximum search radius equal to 
the minimum radius times the anisotropy ratio. At 
least 1 and no more than 80 points (a maximum of 
10 from each sector) were used to produce each 
kriging prediction. Table 2.3 provides more detailed 
information for search neighborhood parameters by 
stratum. 

At each grid location for which sufficient data existed to produce a kriging prediction, the LOESS trend surface 
was evaluated and estimates of LOESS prediction standard error and condition number were produced. The 
kriging prediction, kriging variance, LOESS prediction, LOESS variance, and LOESS condition number were 
exported from Matlab and GSLIB formats to ESRI GRID format for post-processing using the Spatial Analyst 
extension in ArcGIS 10 (ESRI, 2011).

The model surface representing predicted depth for each stratum was then calculated as the sum of the 
LOESS and kriging prediction surfaces (see Equation 2.1). The corresponding prediction variance surface 
was calculated as the square root of the sum of the LOESS variance and kriging variance estimates. This 
calculation of the total variance assumes that the spatially structured random error component (δ and ε in 
Equation 2.1) is uncorrelated with the mean component (µ). The prediction variance was used to construct ±1 
standard error and 95% confidence interval surfaces (using the standard normal distribution critical value of 
1.96).

Table 2.2. Semivariogram parameters for each depth stratum.

DEPTH 
STRATUM

(m)
n

TYPE 
OF 

VARIO-
GRAM 
MODEL

NO. 
OF 

LAGS

LAG 
SIZE 
(m)

NUGGET 
x10-5(m)

MAJOR 
RANGE 

(m)

MINOR 
RANGE 

(m)

DIREC-
TION 
(°)*

PARTIAL 
SILL 
x10-3

%  OF THE 
SILL DUE 
TO THE 

NUGGET

0-30 2,077,055 Exp 100 100 2.83 1,615 963.25 64.86 11.8 0.2
30-100 514,081 Gau 100 100 2.46 480 180.55 45.00 0.19 11.5
100-200 31,863 Gau 175 58 8.78 1,787 442.38 171.74 0.488 15.2
200-2,000 43,713 Gau 180 56 150.0 1,882 1,358.12 119.88 5.91 20.2
Exp= exponential; Gau= Gaussian; *Clockwise from North

Table 2.3. Search neighborhood parameters by depth stratum.

DEPTH 
STRATUM

(m)

MINIMUM 
SEARCH 
RADIUS 

(km)

MAXIMUM 
SEARCH 
RADIUS 

(km)

SEARCH 
ELLIPSOID 
ANGLE (°)*

0-30 3.353 2.0 64.86
30-100 5.317 2.0 45.00
100-200 12.117 3.0 171.74
200-2,000 6.929 5.0 119.88
*Clockwise from North
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		  (Exp(Ztransform) – a) / b						      (Equation 2.3)

where Ztransform is the depth prediction in transformed units and a and b are the error model parameters described 
for Equation 2.2.

Finally, the separate surfaces representing predicted depth and uncertainty for all four strata were mosaicked 
to generate seamless surfaces covering the whole study area. At locations with more than one prediction 
(i.e., where strata overlap), values for the mean (or variance) were calculated by a weighted average, where 
weights corresponded to the inverse of prediction variance (normalized by the sum of the weights for all the 
depth strata).

2.3.4 Model Validation and Accuracy Assessment
Cross-validation
A cross-validation exercise was carried out for each depth stratum to assess the accuracy of the geostatistical 
modeling approach. For purposes of this exercise, 50% of the data points in each stratum were selected at 
random for inclusion as “training data”, with the remaining points held out as “validation data.” Models were 
developed following the methods above applied only to the training data, and predictions were evaluated at the 
validation data locations. The values of the mosaicked prediction and final mosaicked prediction ± 1 standard 
error surfaces built from the training dataset were extracted at the validation point locations and cross-validation 
error statistics (Mean Average Error [MAE], Mean Average Percentage Error [MAPE], and Root Mean Square 
Error [RMSE]) were calculated. Since the final model was produced using the entire dataset, two times larger 
than the training dataset, these cross-validation statistics represent a conservative upper bound on the error 
statistics of the final model. 

Independent Accuracy Assessment
In addition to cross-validation, geostatistical model predictions were also compared to depth predictions of 
the CRM (described in Section 2.1) and to a multibeam dataset, hereafter referred to as the STRATAFORM 
survey. The STRATAFORM survey collected soundings offshore of New York and New Jersey around 39° 
12’N 72°50’W as part of the STRATAFORM project using an EM1000 MBES (Mayer et al., 1999; Nittrouer, 
1999; Goff et al., 1999). The STRATAFORM survey covered 2,500 km2 of seafloor in water depths ranging 
from 20 to 400 m and provides depth estimates for a contiguous surface at 10 m gridded resolution. Although 
MBES data does contain some error, for our purposes we consider it to represent the “ground truth” since 
accuracy and resolution of MBES surveys is much better than interpolated and compiled archival hydrographic 
surveys. To facilitate comparison, our 83.8 m model grid was overlaid on the 10 m STRATAFORM grid and 
the mean STRATAFORM values in each model grid cell were calculated. The geostatistical model and CRM, 
were compared to the STRATAFORM survey within the STRATAFORM survey footprint by calculating mean 
difference (bias), MAE, MAPE and RMSE. Comparison statistics were calculated for the entire area of overlap 
and for depth strata within that area (30-100 m, 100-200 m).

2.4 RESULTS AND DISCUSSION
2.4.1 Bathymetry Model Predictions 
The new bathymetric model extends over the continental shelf and across the shelf slope, covering the 
majority of the planning area (Figure 2.5). Depth predictions ranged from 0 m at the shore to around 2,100 m 
on the shelf slope. Some nearshore areas, like the approach to New York Harbor, were not modeled due to 
processing limitations arising from extremely high data density. A few small patches in the nearshore areas 
off southern New Jersey and western Long Island did not have model predictions because the geostatistical 
model was unable to produce predictions where soundings with distinctly different measured depths occurred 
at virtually the same location. This occurred where older, less accurate surveys coincided with more recent, 
more accurate surveys.
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Duane et al. (1972) found that sand ridges were a dominant geomorphologic feature on most of the northeast 
U.S. Atlantic continental shelf. These features were evident in the bathymetry model, particularly to the west 
of Hudson Canyon and in the northeast of the study area. Submarine canyons, like Hudson Canyon, and 
shallower networks of gullies were also evident in the model along the shelf slope.

2.4.2 Bathymetry Model Uncertainty
Model standard error ranged from 0.026 m to almost 200 m over the study area (Figure 2.6). In general, 
model standard error was less than 5 m at depths shallower than 30 m. In this depth stratum, standard 
error was relatively higher (2-10 m) in areas where surveys occurred prior to 1958 (Figure 2.2). At depths 
from 30 m to 100 m, standard error was typically less than 2 m, but reached as much as 5 m in some areas 
where depths approached 100 m. Standard error typically ranged from 2-5 m for depths between 100 and 
200 m but was higher (5-10 m) in some areas where depths approached 200 m at the shelf edge. Along the 
shelf slope, standard error increased from 10-20 m at depths closer to 200 m to greater than 50 m in areas 
deeper than 500 m. Although standard error generally increased with sounding depth beyond the 30 m depth 
contour, error was also dependent on distance between surveys. As expected, within each depth stratum, error 
was generally lower along survey transects where distance between soundings was shortest (lines clearly 

¯
New York

CT

NJ

RI MA

NY Planning Area

Estimated Mean Depth (m)
Shallow: 0

300

600

900

1200

1500

1800

Deep: 21000 10 20
Nautical Miles

0 50 10025
Kilometers

30m

50m

100m

200m

Figure 2.5. Bathymetric surface developed from the geostatistical model, draped over separate hillshade layers derived for the 
continental shelf (0-200 m) and the shelf slope (>200 m). Solid black lines depict depth contours derived from the bathymetric surface. 
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distinguishable in Figure 2.6). There were two primary reasons for higher error along the shelf slope when 
compared to shallow areas. First, the absolute precision of sounding instruments generally decreases with 
depth, and second, soundings become sparser farther offshore. There were several areas south of Hudson 
Canyon where sounding tracks are greater than 8 kilometers apart (Figure 2.2). 

The prediction standard error surface indicates the uncertainty associated with the model prediction at each 
location, assuming that statistical assumptions of the model are met. Local regressions can be inaccurate 
as the limits of matrix precision are approached, as indicated by high condition numbers (Figure 2.7). The 
condition number is a diagnostic that indicates the stability of the local regression trend model at each location. 
Higher spatial condition number values indicate that the regression solution is less stable at that location, 
such that small variations in the input data (e.g., uncertainty due to measurement error) can result in large 
variations in the prediction. For second order polynomials, the critical spatial condition number threshold value 
is approximately 100, meaning that predictions should be considered with caution at locations where the 
spatial condition number is close to 100 and should be considered unreliable where it is greater than 100 
(Golub and Van Loan, 1996). Under these conditions, the standard error surface may underestimate actual 
error. This occurs only in a narrow band along the southern coast of Long Island.

¯
New York

CT

NJ

RI MA

NY Planning Area

Estimated Depth Error

< 1

1-2

2-5

5-10

10-20

20-50

> 50

(standard error) (m)

0 10 20
Nautical Miles

0 50 10025
Kilometers

30m

50m

100m

200m

Figure 2.6. Estimated error of predictions (standard error) from the bathymetric model. Model standard error provides an indication of 
prediction uncertainty.
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Model uncertainty was also depicted using theoretical 95% confidence intervals of the depth predictions 
(predicted depth ± 1.96*standard error) along two hypothetical transects (Transect 1 and Transect 2) that 
spanned from the shoreline to the shelf slope (Figure 2.8). Transect 2 differed from Transect 1 in that it 
cut across a submarine canyon (Hudson Canyon) at the shelf edge. Maximum and minimum depth values 
representing the upper and lower bounds of the 95% confidence intervals were extracted at 100 m intervals 
along each transect. For both transects, the width of the 95% confidence intervals generally increased with 
distance from shore and with depth. However, model uncertainty was greater and more variable in the 0-30 m 
depth stratum than it was in the 30-100 m depth stratum (Figure 2.9, Figure 2.10). At depths greater than 200 
m, the 95% confidence interval widths increased dramatically with distance from shore and had an average 
vertical width of almost 0.25 km. 

To explore how uncertainty in depth predictions may translate into horizontal uncertainty and how this uncertainty 
could impact management decisions (e.g., the siting of a wind farm), depth contours (30 m, 50 m, 100 m, 200 
m) derived from the model prediction and from the upper and lower limits of the theoretical 95% confidence 
intervals (±1.96*standard error) were overlaid on the boundaries of theoretical wind farm areas within the NY 
study area (Figure 2.11). These theoretical wind farm areas correspond to areas outside of shipping lanes 
and within current depth constraints for wind farm structures. These depth contours were mapped to produce 
a rough estimate of the horizontal uncertainty associated with the model predictions. Within the potential 
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Figure 2.7. Spatial condition number from the LOESS trend model. Condition number classes reflect the threshold at which standard 
error predictions should be considered unreliable.
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were drawn between the 50 
m depth contours derived 
from confidence interval limits. 
The transects were drawn 
approximately perpendicular to 
the 50 m depth contour derived 
from the model prediction at 
intervals of approximately 5 km. 

In this region, the mean 
distance between the depth 
contours derived from the 
confidence interval limits was 
approximately 8 km with a 
standard deviation of almost 
3 km. While this measure only 
represents a rough estimate 
of horizontal uncertainty, it 
suggests that depth predictions 
from this model and other 
models developed using similar 
data should be used with 
caution when high positional 
precision is needed.

2.4.3 Cross-validation of the Training 
Dataset
Cross-validation results indicated that the 
geostatistical model performed extremely well 
in the 0-30 m and 30-100 m depth strata (mean 
absolute errors 0.60 m and 0.55 m, respectively). 
The model performed reasonably well in the 100-
200 m depth stratum (mean absolute error of 2.1 m, 
or 1.40%), but model accuracy was considerably 
degraded in the 200-2,000 m depth stratum (mean 
absolute error 25.76 m, or 3.44%) (Table 2.4).

Cross-validation was also used to assess the 
accuracy of confidence intervals. The theoretical 
68% confidence intervals (model prediction ± 
standard error) are somewhat conservative for 
all depth strata (Table 2.5). For depths below 
100 m, the theoretical 95% confidence intervals 
(model prediction ± 1.96*standard error) are 
slightly conservative, but the geostatistical model 
underestimates error at depths greater than 100 
m, especially at depths greater than 200 m. For 
example, in the 200-2,000 m depth range model 
standard errors should be multiplied by a factor of 
2.46, rather than the theoretical value of 1.96, to 
produce true 95% confidence intervals (Table 2.5).
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Figure 2.8. Locations of transects used to depict theoretical 95% confidence intervals of the 
geostatistical model predictions as a function of distance from score and local geomorphology.

Table 2.4. Cross-validation statistics for the geostatistical model built 
from the training dataset. Negative bias indicates a deep bias while pos-
itive bias indicates a shallow bias. MAE = Mean Absolute Error, MAPE 
= Mean Absolute Percentage Error, RMSE = Root Mean Square Error. 

DEPTH STRATUM COMPARISON
STATISTIC

CROSS-
VALIDATION

ERROR

Overall (0-2,000 m)

Bias -0.08 m
MAE 1.04 m

MAPE 6.53%
RMSE 5.53 m

0-30 m

Bias -0.17 m
MAE 0.60 m

MAPE 7.72%
RMSE 1.24 m

30-100 m

Bias 0.02 m
MAE 0.55 m

MAPE 1.42%
RMSE 0.96 m

100-200 m

Bias 0.06 m
MAE 2.14 m

MAPE 1.40%
RMSE 5.48 m

200-2,000 m

Bias 2.97 m
MAE 25.76 m

MAPE 3.44%
RMSE 41.23 m
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Figure 2.9. (a) Predicted depth (m) with theoretical 95% confidence intervals (± 1.96*standard error) vs. 
distance from shore (km) along Transect 1. (b) Predicted depth (m) with 95% confidence intervals by 
depth stratum. (c) Distribution of 95% confidence interval widths with the mean (x) and standard deviation 
(sd) for each depth stratum. The probability density of the confidence interval widths was estimated using 
a kernel density function (Särkkä 1999).
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Figure 2.10. (a) Predicted depth (m) with theoretical 95% confidence intervals (± 1.96*standard error) vs. 
distance from shore (km) along Transect 2. (b) Predicted depth (m) with 95% confidence intervals by depth 
stratum. (c) Distribution of 95% confidence interval widths with the mean (x) and standard deviation (sd) for 
each depth stratum. The probability density of the confidence interval widths was estimated using a kernel 
density function (Särkkä 1999).
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2.4.4 Independent Accuracy Assessment
The STRATAFORM dataset is ideally located for an independent accuracy assessment of the geostatistical 
model because it extends across multiple depth strata and overlaps NOS hydrographic soundings collected 
using multiple sounding and positioning methods. 

As a benchmark, we evaluated our model performance in comparison to the CRM in the STRATAFORM area. 
This may not be an entirely fair comparison, since it is possible (though not verifiable) that the CRM included 
some version of the STRATAFORM data; however, we proceed anyway with the caution that the CRM error 
statistics may be significantly better in this region than in other parts of the study area.

Overall we found that both the 
geostatistical model and CRM are 
excellent models in the 30-100 m depth 
range for the STRATAFORM area 
(mean absolute error [MAE] < 1 m, mean 
absolute percent error [MAPE] < 1.5%), 
but accuracy of both models degraded 
with depth in areas deeper than 100 m 
(Table 2.6). We found the geostatistical 
model did not improve upon the CRM 
in terms of accuracy (when comparing 
MAE, MAPE, and root mean-square-
error [RMSE]) (Table 2.6), but it was 
able to provide reliable estimates of 
uncertainty, at least for depths less than 
200 m (see Figure 2.6), and obtaining 
these estimates was the principal 
reason for undertaking a geostatistical 
model in the first place. For the 30-
100 m and 100-200 m depth strata the 
percent correct within theoretical 95% 
confidence intervals were 97.89% and 
97.06%, respectively, indicating that the 
confidence intervals were accurate.

Results on bias were mixed. In the 30-
100 m depth stratum, the geostatistical model was approximately unbiased, whereas the CRM exhibited a 
slight shallow bias (+0.55  ). However, in the 100-200 m depth stratum the geostatistical model exhibited more 
of a deep bias (-0.68 m) than the CRM (-0.35 m). These biases are small and of the magnitude expected due to 
known sources of error (e.g., quantization due to rounding of measurement units, changes in tidal references 
and vertical datums; Calder, 2006).

Table 2.5. Performance of theoretical 68% and 95% confidence intervals. 

DEPTH STRATUM

PERCENTAGE OF 
VALIDATION DATA 

WITHIN THEORETICAL 
68% CONFIDENCE 

INTERVAL

STANDARD ERROR 
MULTIPLIER FOR 

68% CONFIDENCE 
INTERVAL 

(COMPARED TO 1.0)

PERCENTAGE OF
VALIDATION DATA 

WITHIN THEORETICAL 
95% CONFIDENCE 

INTERVAL

STANDARD ERROR 
MULTIPLIER FOR 

68% CONFIDENCE 
INTERVAL

(COMPARED TO 1.96)
Overall (0-2,000 m) 87.50% 0.42 95.50% 1.84
0-30 m 87.60% 0.40 95.40% 1.86
30-100 m 87.00% 0.49 95.90% 1.77
100-200 m 88.30% 0.35 94.70% 2.04
200-2,000 m 80.80% 0.62 92.70% 2.46

Table 2.6. Results from an accuracy assessment of the geostatistical model and 
the coastal relief model (CRM). The new geostatistical model and the CRM are 
compared against the STRATAFORM data. Negative bias indicates a deep bias 
while positive bias indicates a shallow bias. MAE = Mean Absolute Error, MAPE = 
Mean Absolute Percentage Error, RMSE = Root Mean Square Error. 

DEPTH 
STRATUM

COMPARISON 
STATISTIC

INDEPENDENT 
ACCURACY 

ASSESSMENT 
ERROR, 

GEOSTATISTICAL 
MODEL

INDEPENDENT 
ACCURACY

ASSESSMENT
ERROR, 

COASTAL
RELIEF MODEL

Overall
(30-200 m)

Bias -0.23 m 0.21 m
MAE 1.17 m 1.15 m

MAPE 1.18% 1.12%
RMSE 3.27 m 3.39 m

30-100 m

Bias 0.05 m 0.55 m
MAE 0.90 m 0.84 m

MAPE 1.20% 1.10%
RMSE 1.27 m 1.15 m

100-200 m

Bias -0.68 m -0.35 m
MAE 1.60 m 1.65 m

MAPE 1.14% 1.15%
RMSE 5.06 m 5.32 m
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primary variable of interest. However, when certainty in depth estimates needs to be accounted for, then the 
geostatistical model should be preferred, particularly when the depths of interest are shallower than 200 m. 

Examples of situations where estimates of bathymetric uncertainty may be useful include measuring the 
amount of habitat area falling into a given depth range, or identifying suitable construction zones for wind 
farms based on a depth limit (Figure 2.11). In the latter case, uncertainty can be used to define risk of additional 
development costs and be used to target the best areas to build within potential construction zones. 

2.5 LIMITATIONS TO INTERPRETATION AND FUTURE DIRECTIONS
The geostatistical approach we have employed to create a gridded, interpolated bathymetry surface is an 
improvement over previous bathymetry models in that it generates a spatially explicit error map to accompany 
the predicted surface. The cross-validation and independent accuracy assessments show that the model 
performs similar to the NOAA Coastal Relief Model with the advantage of providing reliable uncertainty 
estimates. However, several limitations and potential improvements to our approach should be noted here to 
support interpretation of our models and development of future efforts. Noted limitations will also apply to the 
CRM and other modeling techniques. Principal limitations of our geostatistical models arise from three general 
factors: 

1) data quality: integrating diverse soundings collected over time and using different methodologies 
results in a variety of potential distortions in the final surface, 

2) resolution: the spatial resolution of original sample data and of the model output grid limit the 
minimum scale of features that can be resolved, and,

3) model assumptions: geostatistical models involve a number of simplifying assumptions that do 
not fully capture the complexity of underlying geomorphological patterns.

To help users better understand limitations and appropriate uses of this model, and to guide development 
of future models, we provide brief explanations and examples of these limitations below and suggest some 
potential improvements. 

2.5.1 Data Quality
Hydrographic soundings in the study area came from a multitude of surveys spanning more than a century 
(1887-2004). Surveys used an assortment of positioning and sounding technologies, resulting in a patchwork 
of overlapping soundings collected at varying sample spacings and with different precisions. These errors can 
propagate to the final model creating distortions that do not correspond to changes on the seafloor.

We have not dealt explicitly with horizontal positioning error. The impact of horizontal positioning error will 
show up in our models as an increase in the nugget effect over the actual instrument measurement error. 
Some studies have integrated estimates of positioning uncertainty explicitly into spatial models (Kielland and 
Tubman, 1994; Jakobsson et al., 2002). Kielland and Tubman (1994) used pseudo-points about the nominal 
location to combine ship position uncertainties with modeling uncertainties. Jakobsson et al. (2002) used 
a direct simulation Monte Carlo method in which an ensemble of possible data configurations were drawn 
assuming a distribution of positioning errors. These approaches could be used to improve the precision of our 
estimates of bathymetric uncertainty by accounting for differences in positioning certainty between older and 
newer data. 

We also did not explicitly account for differences and possible systematic biases in vertical accuracy of survey 
data. Archival NOS Hydrographic Survey data has been processed using varying methods over the years which 
have created some systematic post-processing errors (see Calder, 2006 for a full discussion). Briefly, Calder 
(2006) reported that archival lead line soundings (common prior to 1978) are systematically shallow-biased 
because of “hydrographic rounding” (a tendency to round down to the next shallowest whole fathom). Generally, 
the more recent VBES data appears approximately unbiased (but see below), and modern multibeam surveys 
offer the most precise information. Calder’s findings suggest that some older VBES soundings are also biased 
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or fathom (listed in the metadata as “smooth sheets digitized for NOS under contract”). It may be impossible 
to correct for biases in these data because the precise procedures followed were not recorded. More recent 
data entered directly into the database after collection by digital instruments are less likely to have systematic 
rounding error.

For our purposes, we applied a correction factor to lead line surveys because these were found to have 
a predictable, systematic error in our study area (Calder, 2006). However, we were unable to correct for 
probable systematic biases in other sounding methods (e.g., VBES data that went through a smooth sheet 
digitization). Survey metadata indicates that 
approximately 18% of soundings were non-lead 
line data that were digitized using smooth sheets, 
and therefore would be improved by some bias 
correction. We attempted to reduce the effect of 
these potentially biased surveys by eliminating 
data from those surveys where they fell within 
the footprint of more modern surveys known to 
be unbiased (direct digitally ingested VBES and 
MBES). However, unfortunately, about 40% of 
the study area was only covered by archival lead 
line data and/or VBES data digitized from paper 
charts. These areas are less reliable and may 
contain systematic biases (typically shallow-biased 
by <2 m) that are not fully reflected in our model 
uncertainty estimates. In places where only older, 
less reliable data are available, we suggest using 
maps of survey age (Figure 2.2) and/or estimated 
survey measurement error based on the technique 
used for sounding (Figure 2.12) to supplement 
model-based uncertainty maps. These maps 
viewed alongside geostatistical model errors can 
help identify unreliable areas and areas where 
additional bathymetric information would improve 
future planning decisions. 

We have purposefully neglected consideration of changes to the seafloor occurring over time. Temporal 
changes may or may not be reflected in spatially-explicit model error estimates depending on the ages of 
nearby surveys. We expect positional error attributed to change over time may be substantial in some areas, 
especially in highly dynamic areas, such as where tidal and riverine influences are great. 

Finally, we note that recently developed geostatistical algorithms could be used in the future to account for 
heterogeneous measurement error among methods (Christensen, 2011) to improve accuracy and more 
appropriately weight higher quality data.

2.5.2 Resolution
The distance between soundings was not uniform across the study area (Figure 2.2). The length scale 
of features that can be resolved will be shorter (higher resolution) in areas with greater sounding density. 
Moreover, it is possible that our model-based uncertainties will underestimate true error in areas with sparse 
soundings, especially when very high amplitude, high frequency features are present (e.g., high frequency, 
short-wavelength sand waves). The chances of this and other problems arising from interactions of sample 
spacing and high-frequency features (e.g., aliasing) are greater when samples are both sparse and very 
regularly spaced. Fortunately, in our cross-validation and independent accuracy assessment we did not find 
evidence for significant overall underestimation of uncertainty, but localized impacts are still possible in areas 
with high frequency features relative to sample spacing (e.g., sand waves). 
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will not be reliably resolved in our model. The spatial scale at which these features become visible is dependent 
on the relative distribution of soundings, the methods used to model spatial structure and the output resolution 
of maps. Although the sounding density would support resolution approaching 10 m in some limited areas (see 
Figure 2.2 where sounding density exceeds 100 km-1), the output model grid size was ~85 m. The minimum 
scale of resolved length scales is twice the output resolution, or ~170 m. For the vast majority of the study 
area data density was much sparser and could only detect features at scales on the order of 102 m and in 
some areas 103 m. In general, new MBES and/or sidescan sonar surveys are needed if greater detectability at 
short spatial scales is required. In some cases, modern VBES surveys acquired with co-registered sidescan 
information may be used to identify some missed features. Additionally, Calder (2006) presents a unique 
method of integrating a variance term corresponding to “hydrographic oversight” of smaller features, but the 
term requires a very good understanding of the data and geomorphology. 

2.5.3. Model Assumptions
A full discussion of the statistical assumptions inherent in the LOESS local regression and geostatistical 
approaches used here is beyond the scope of this chapter; the reader is referred to texts on the subjects (e.g., 
Cleveland and Devlin, 1988; Cressie, 1993; Chiles and Delfiner, 1999). However, it is important to note here 
that geostatistical models are not capable of reproducing the full complexity of geomorphological patterns 
(e.g., alluvial fans, sand waves) unless data are very dense. This is because geostatistical models describe 
spatial correlation as a simple function of distance between points, allowing only for very simple geometric 
anisotropy. Complex multi-point erosional and depositional patterns can’t be resolved unless they are densely 
sampled. Texture-mapping approaches could possibly improve prediction of complex geomorphology (e.g., 
Boucher, 2009). Ultimately, however, collection of new multibeam bathymetry is preferable to any attempt to 
statistically reconstruct fine-level details in archival hydrographic surveys. 
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