Surficial Sediments
Matthew Poti'?2, Brian Kinlan'?, and Charles Menza?

3.1. SUMMARY

Mapping seafloor features, including sediment
characteristics and distribution, provides crucial
information for a number of coastal and marine
spatial planning applications. Seafloor maps can
be used to help identify critical habitat areas for
benthic organisms (e.g., clams, corals, demersal
fish), select appropriate offshore construction
sites, and plan sand/gravel mining operations.

Predictive models of mean grain size, sediment
composition, and hard bottom occurrence were
developed for the New York study area (Figure
1.2). These new models build upon the data
compilations and analytical frameworks laid out
by Goff et al. (2008), Poppe et al. (2005) and Image 3.1. Example of sand waves. Photo credit: NOAA/CCMA/
Greene et al. (2010), respectively. For mean Biogeography Branch.

grain size and sediment composition, the models

provide continuous, gridded spatially-explicit prediction surfaces and corresponding uncertainty estimates.
The hard bottom occurrence model also provides a continuous gridded prediction surface representing the
likelihood of hard bottom occurrence. All information was mapped on the same 30 arc-second horizontal
resolution grid used to characterize ocean habitat and seabird variables in Chapters 4 and 5 of this report.

3.2. BACKGROUND

The New York study area, like other broad continental shelf regions in the northeastern United States, is
characterized by spatially variable seafloor features that have formed as a result of dynamic marine geological
processes, particularly the dramatic (>100 m) rise in sea level following the last glaciation (Williams et al.,
2006; Goff et al., 2008). The present distribution of surficial sediments in the region reflects deposition, erosion,
and other sedimentological processes during this period of sea level rise (Williams et al., 2006).

The continental shelf within the study area has relatively simple topography and slopes gently from the shore
to the shelf edge 100-150 km from shore (Allen et al., 1983). The seafloor on the continental shelf is composed
mostly of sand which grades to silt and clay in deeper areas (Poppe et al., 1994). The relatively homogeneous
seafloor is interrupted by sporadic relic sand and gravel ridges, exposed sandstone and bedrock, dumping
sites, dredge disposal sites, and artificial reefs (e.g., shipwrecks, lost cargo, submerged pipelines). The most
pronounced topographic features in the study area are the Hudson Shelf Valley, which crosses the entire shelf
at the southern end of the study area (Butman et al., 2003), and many shelf edge incisions made by submarine
canyons. The Hudson Canyon connects to the Hudson Shelf Valley and is the largest submarine canyon on
the U.S. Atlantic continental margin (Butman et al., 2006).

Mapping seafloor sediment characteristics is challenging, in part, because of the high variability of sediment
characteristics at relatively short spatial scales. Characterization of physical features of the seafloor is often
limited by the availability of comprehensive sampling across a wide range of spatial scales (Goff et al., 2008).
Traditional bottom grab, core, trawl and camera surveys are limited in their spatial coverage. One solution to this
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problem developed in recent decades is the use of acoustic backscatter information to characterize physical
properties of seafloor sediments (e.g., Lathrop et al., 2006; De Falco et al., 2010; Harris and Stokesbury, 2010;
Brown et al., 2011).

Multibeam and sidescan sonar surveys completed in the New York study area (see Figure 2.1) recorded
acoustic backscatter or reflectance data. If appropriately processed, this information can provide fine-scale
sediment composition maps in areas of coverage. Acoustic backscatter data is not, however, uniformly available
across the NY study area. Moreover, Goff et al. (2008) stressed geographic variability in the relationship
between acoustic backscatter and sediment characteristics owing to differences in environmental factors like
bathymetric slope and water column properties. They suggested that extensive direct sampling of surficial
sediments is needed to assess the correlation between backscatter intensity and sediment character from
region to region, which limits its utility to densely ground-truthed areas.

An alternative method is to statistically model the spatial distribution of sediment using large databases
assembled from many surveys. Goff et al. (2008) proposed and illustrated this method using the recently
compiled U.S. Geological Survey (USGS) Atlantic Coast usSEABED database (Reid et al., 2005). The
usSEABED database provides an extensive and heterogeneous collection of seabed survey data derived from
a number of sources. The database includes both “extracted” information derived from analytical measurements
and “parsed” information that is inferred from word-based descriptions (Reid et al., 2005). Goff et al. (2008)
found that usSEABED parsed and extracted mean grain size data were suitable for use in sediment mapping
even though data were collected using a range of methodologies across several decades, provided they were
appropriately quality-controlled and bias-corrected. The predictive models described in this chapter are built
on quality-controlled and bias-corrected usSEABED data.

Two notable additional mapping efforts have produced sediment grain size distribution maps for the U.S.
Atlantic coast. First, the USGS Continental Margin Mapping (CONMAP) Program developed a coarse-scale
sediment grain size distribution map for the U.S. East Coast continental margin through the analysis and
compilation of thousands of sediment samples, many of which are part of usSEABED. The CONMAP sediment
data layer is a vector dataset with polygons classified according to the dominant surficial sediment type (Poppe
et al., 2005). The metadata provided with the CONMAP sediment data layer indicates that this dataset does
not capture localized features of sediment distribution and should be used mainly to describe regional trends in
sediment grain size distribution (Poppe et al., 2005). It is therefore useful mainly as a qualitative mapping aid.
Second, as part of the Northwest Atlantic Marine Ecoregional Assessment, The Nature Conservancy (TNC)
produced a map of soft sediment characteristics using an interpolation of mean grain size point data from the
usSEABED sediment database (Greene et al., 2010). A point dataset of hard bottom locations derived from
the usSEABED dataset and National Marine Fisheries Service (NMFS) bottom trawl survey data was overlaid
on the soft sediment map to identify hard bottom areas (Greene et al., 2010). The TNC maps were aimed at
broad scale regional planning and did not provide a spatial assessment of map accuracy.

The present study aims to build on previous mapping efforts by developing maps more appropriate for fine
scale planning decisions in the NY study area, with spatially explicit accuracy maps.

3.3. METHODS

3.3.1. Study Region and Grid

Predictions for mean grain size, sediment composition and the likelihood of hard bottom occurrence were
made on a 30 arc-second spatial resolution geographic grid spanning the New York study area. The same
grid was applied to predict oceanographic variables (Chapter 4) and seabird distributions (Chapter 6). The 30
arc-second grid has a north-south linear dimension of 0.927 km and an average east-west linear dimension of
0.814 km in the study area. For simplicity, decimal degrees were used to keep track of grid cell centroids and
measure distances using a simple elliptical geodetic approximation; the effects of this simplifying assumption
were negligible given the size of our study region and grid configuration (potential errors in linear distances <
50% of grid cell horizontal resolution).




3.3.2. Mean Grain Size

Data Preparation

We obtained the quality-controlled, bias-corrected, merged parsed and extracted database of mean sediment
grain size (@) described in Goff et al. (2008) from the lead author of that study (Dr. John Goff, University of
Texas at Austin). Mean grain size is reported in ¢ units, where ¢ = -log,(mean grain diameter in mm) (Krumbein
and Sloss 1963). In this scale, gravel corresponds to -6 to -1 ¢, sand corresponds to -1 to 4 ¢, and mud
corresponds to 4 to 12 ¢.

Goff’'s dataset was derived from the publicly available usSEABED Atlantic Coast Offshore Surficial Sediment
Data Release, version 1.0 (Reid et al., 2005). The original usSEABED extracted and parsed datasets were
filtered to remove records that did not relate to surficial sediments. At locations with multiple records pertaining
to surficial sediments, mean grain size was averaged. Since the laboratory-based analyses used to generate
the extracted data may exclude hard components like shell and gravel and may therefore introduce a bias
toward finer particles (Williams et al., 2006; Harris and Stokesbury, 2010), the parsed data were bias-corrected
as described in Goff et al. (2008) prior to merging the extracted and parsed data. Goff’s data covered only the
mid-Atlantic portion of the U.S. Atlantic coast. We extracted a subset of the data including the NY study area
for further analysis.

Development of the Mean Grain Size Model

A geostatistical modeling approach was used to predict a continuous, gridded surface for surficial sediment
mean grain size from scattered sediment survey point data and to generate corresponding spatially-explicit
uncertainty estimates. The same general modeling approach used for the bathymetry prediction and described
in Section 2.3.1 was used for this analysis and is not reiterated here (see Cressie 1993 and Figure 2.3 for work
flow). All geostatistical modeling steps were performed in ArcGIS 10 using the Spatial Analyst and Geostatistical
Analyst toolboxes (ESRI 2011a).

The deterministic mean trend was estimated using local polynomial interpolation (LPI), a semi-parametric local
regression technique that creates a prediction surface by fitting polynomial functions of a specified degree to
data in overlapping search neighborhoods defined by a constant search radius, or bandwidth (ESRI 2011a).
LPI uses weighted least-squares regression, with weights equal to 0 outside the search neighborhood, and a
Gaussian function of distance inside the search neighborhood. LPI was chosen over other techniques because
it provides approximate parametric confidence intervals, and because bandwidth can be adjusted to ensure
that only broad-scale trends are captured, leaving more localized information in residuals. LPI outputs are a
prediction surface, an approximate parametric prediction standard error surface, indicating the uncertainty
associated with the prediction at each location, and a spatial condition number surface, indicating the stability
of the local regression model at each location. Higher spatial condition number values indicate that the solution
is less stable, such that small variations in the input data (e.g., uncertainty due to measurement error) can
result in large variations in the prediction. For second order polynomials, the critical spatial condition number
threshold value is 100 (Golub and Van Loan, 1996), meaning that predictions should be considered with caution
at locations where the spatial condition number is close to 100 and should be considered unreliable where it is
greaterthan 100. We used second degree (quadratic) polynomials, an eight sector circular search neighborhood
with 1 decimal degree bandwidth (~111 km), and Gaussian kernel weights. At least 10 and no more than 250
data from each sector were used to produce each trend prediction. The eight-sector neighborhood search was
used to mitigate the effects of uneven sample distribution on the trend surface estimation.

Residuals were obtained by subtracting the trend surface prediction at each data location from the observed
data value. Residuals were checked for normality by examining histogram and normal QQ plots. A sample
semivariogram of the residuals was then calculated in ArcGIS 10 using the Geostatistical Analyst extension
(ESRI, 2011a). Lag size was selected based on examining the distribution of nearest-neighbor distances,
choosing the smallest lag size that would allow sufficient samples to estimate semivariance values near the
origin. Anisotropy (i.e., changes in spatial autocorrelation due to direction) was checked using directional
semivariograms. To model spatial autocorrelation in residuals, a constrained weighted least squares algorithm
was used to fit an exponential anisotropic model to the sample semivariogram (model parameters in Table 3.1).
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Fitted semivariogram model parameters were used to perform ordinary kriging (OK) of the residuals in ArcGIS
10 using eight-sector search neighborhoods and anisotropic search neighborhood radii equal to the radii of
the anisotropic semivariogram model. At least 5 and no more than 25 data points from each sector were used
to produce kriging predictions on a 30 arc-second grid. Kriging predictions were generated at the centroid
of each grid cell. We confirmed that centroids did not intersect with data point locations, so that the nugget
effect (measurement error and small-scale variance) was “filtered out” of the kriging prediction. This resulted
in a desirable noise reduction in the prediction surface, equivalent to the maximum a posteriori resampling
algorithm used by Goff et al. (2006, 2008).

Table 3.1. Semivariogram parameters for the mean grain size model.

Mean
Grain | 14,612 Exp 50 1.11 1.26 24 .44 12.22 | 288.05 0.98 56.25
Size?

a - in @ units, where @ = -log,(mean grain diameter in mm); b - converted from decimal degrees to kilometers using 111.1 km/decimal degree;

¢ - clockwise from North; Exp = Exponential

The model surface representing the predicted mean grain size was calculated as the sum of the trend (LPI) and
residual (kriging) prediction surfaces. The corresponding prediction standard error surface was calculated as
the square root of the sum of the trend and kriging prediction variances (errors in the trend and residual surfaces
are assumed to be independent). The final prediction and prediction standard error surfaces were exported as
ESRI grids with the extent and spatial resolution described in Section 3.3.1. An error mask was applied to the
output grids to exclude areas where the kriging standard error was greater than 97.5% of the residual sample
standard deviation. This error mask was applied to all surficial sediment outputs for consistency.

In addition to the prediction and prediction standard error maps, a vector dataset with polygons classified
by mean grain size classes was generated by assigning each grid cell a mean grain size class using the
classification scheme of Wentworth (1922). Finally, the probability of mean grain size exceeding the thresholds
25.6 cm (¢ < -8, boulders and larger), 6.4 cm (¢ < -6, cobbles and larger), 2 mm (¢ < -1, pebbles and larger),
and 0.062 mm (@ < 4, very fine sand and larger) were mapped, by integrating under the normal distribution
defined for each grid cell by the OK prediction mean and variance.

3.3.3. Sediment Composition

Data Preparation

Seabed survey data from the usSEABED Atlantic Coast Offshore Surficial Sediment Data Release, version 1.0
(Reid et al., 2005) parsed and extracted databases were used to develop models of the fractional composition
of mud, sand, and gravel in surficial sediments in the study area. Data were downloaded from the USGS
publications website (http://pubs.usgs.gov/ds/2005/118/htmldocs/usseabed.htm). The dataset provided by Dr.
Goff for the mean grain size analysis was not used for sediment composition modeling because it did not
include percentages of mud, sand, and gravel. The survey point data was filtered to remove duplicate points
and points not relating to surficial sediments. Survey records were removed if the “sample phase” attribute for
the database record indicated that the sample was clearly not from surficial sediments (e.g., from the bottom
of the sample core). When multiple records referred to the same sample core, the record that described the
top of the sample core (as indicated by the “sample top” attribute) was retained and the other records were
removed. When multiple records pertaining to surficial sediments existed at a location, values for percent mud,
percent sand, and percent gravel were averaged. When the sum of all fractions exceeded 100%, each of the
mud, sand, and gravel percentages was divided by the sum to re-normalize sums to 100% (sums were seldom
greater than 110% so any error introduced by this re-normalization procedure would be small). Separate
datasets for each sediment type were extracted, excluding records with “no data” for the given sediment type
(but including 0% values). Percentages were converted to fractional values between 0 and 1 for subsequent
processing.




Development of the Sediment Composition Models

The same geostatistical approach used to model mean grain size (see Section 3.3.2) was applied separately
to each of the individual sediment type datasets. The deterministic mean trend was fit using the same LPI
parameters as described for the mean grain size model in Section 3.3.2. Specific exponential anisotropic
models for each sediment type were fitted to the sample semivariogram as described in Section 3.3.2 (model
parameters are shown in Table 3.2). Fitted semivariogram model parameters were used to perform ordinary
kriging (OK) following the same procedures outlined in Section 3.3.2.

Table 3.2. Semivariogram parameters for the sediment composition models.

Mud = 55 126 | Exp 50 | 111 | 0.064 | 2444 | 1222 | 8244 0.15 29.91
Fraction
Sand
. 130,127 | Exp 50 | 111 | 0.082 | 2444 | 1222 | 77.87 0.16 33.88
Fraction
B 30115 | Exp 50 | 1.11 0.04 2444 | 1222 | 1415 | 0045 47.06
Fraction

a - converted from decimal degrees to kilometers using 111.1 km/decimal degree; b - clockwise from North; Exp = Exponential

Maps representing the predicted fraction for each sediment type were calculated as the sum of the trend
(LPI) and residual (kriging) prediction surfaces. The corresponding prediction standard error surfaces were
calculated as the square root of the sum of the trend and kriging prediction standard error surfaces (errors in
the trend and residual surfaces are assumed to be independent). The final prediction and prediction standard
error surfaces were exported as ESRI grids with the extent and spatial resolution described in Section 3.3.1.
An error mask was applied to the output grids as described in Section 3.3.2.

Following Goovaerts (1997) and Deutsch and Journel (1998) each sediment type prediction surface was
corrected for order violations by setting values less than zero to zero and values greater than one to one and
by dividing each prediction value by the sum of the three prediction surfaces where their sum exceeded one.
Where the sum was less than one we did not divide by the sum of the prediction surfaces, as some sediment
could have been neither mud, sand, nor gravel (e.g., clay).

In addition to the prediction and prediction standard error maps for each sediment type, a vector dataset with
polygons classified by sediment texture classes was generated by assigning each grid cell a sediment texture
class using the Folk classification scheme (Folk 1954, 1974) based on the predicted ratios of sediment types.

3.3.4. Hard Bottom Occurrence

Data Preparation

An integrated point dataset of known hard bottom locations was built from three sources of seabed survey
data and used to develop a prediction surface for the likelihood of hard bottom occurrence. First, we identified
locations in the usSEABED Atlantic Coast Offshore Surficial Sediment Data Release, version 1.0 (Reid et
al., 2005) parsed and extracted databases where the Shepard code for the point was “solid” or the rock
membership value was greater than zero (for description of the rock membership value see Reid et al.,
2005). Second, we searched the “National Oceanic and Atmospheric Administration (NOAA)/National Ocean
Service (NOS) and U.S. Coast and Geodetic Survey (USCGS) Bottom Type Descriptions from Hydrographic
Surveys” database archived at the NOAA National Geophysical Data Center (NOAA NGDC 2011) for point
locations where hydrographic survey annotations had described the bottom type as hard or rocky. Third, The
Nature Conservancy (TNC) provided a hard bottom point dataset compiled from information in the usSEABED
database (Reid et al., 2005) and the National Marine Fisheries Service (NMFS) bottom trawl dataset as
part of the Northwest Atlantic Marine Ecoregional Assessment (Greene et al., 2010; J. Greene, The Nature
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Conservancy, personal communication, March, 2011; M. Fogarty, NMFS, personal communication, March,
2011). We merged points from these three data sources and removed surveys with identical geographic
coordinates. Sample distribution bias can have strong effects on presence-only models (Phillips et al., 2009;
Elith et al., 2011). To create a dataset with more uniformly distributed sample effort, we removed hard bottom
points in densely surveyed nearshore areas.

Development of the Hard Bottom Occurrence Model

In contrast to other predictive models developed in this report, a geostatistical model could not be applied to the
hard bottom point data, because the available hard bottom datasets were restricted to presences, rather than
absences, of hard bottom. The lack of absence data arises because hard bottom is very patchily distributed
even at very small scales (centimeters to meters). A point sample such as a sediment core that brings up soft
sediment does not preclude the presence of hard bottom in the immediate vicinity. Any geostatistical model
developed using the unreliable absence data would be heavily biased and uninformative. Reliable absence
data for hard bottom generally requires diver, remotely operated vehicle (ROV), photo, video, or acoustic
backscatter data that continuously covers large swaths of area; generally impractical in deeper waters.

For this reason, a maximum entropy (MaxEnt) model was used to predict the likelihood of hard bottom
occurrence by combining the presence-only hard bottom point dataset with potential predictor variables
(Phillips et al., 2006; Phillips and Dudik, 2008). This approach can be thought of as creating a “suitability map”
for the presence of hard bottom patches, analogous to habitat suitability maps developed for organisms (Elith
et al., 2011). A full description of the MaxEnt algorithm is beyond the scope of this document (see Elith et al.,
2011). Briefly, MaxEnt produces an estimate of the relative likelihood of a feature’s occurrence at each location
in a specified grid, assuming that presences take on the most spatially random (uniform) distribution possible
under the constraint that for each environmental predictor variable the expected value from the estimated
distribution matches its observed mean (Elith et al., 2006; Phillips et al., 2006; Peterson et al., 2007). MaxEnt
models are trained on a subset of the data and validated by testing predictions on remaining data. MaxEnt
has been shown to perform well compared to other presence-only approaches (Elith et al., 2006; Phillips and
Dudik, 2008), and is readily implemented using free, open-source software (Phillips et al., 2006, downloadable
at http://www.cs.princeton.edu/~schapire/maxent/).

Environmental predictor variables used to train the model of hard bottom occurrence included mean grain
size, depth, slope, slope of slope, bathymetric variance, distance from shore, signed distance from shelf,
sea surface chlorophyll concentration, and turbidity. All of these predictors are described in Chapters 4 and
6, with the exception of bathymetric variance (calculated as the standard deviation of the depth in ~900 m
rectangular neighborhoods). The same transformations described in Appendix 6.B were applied to mean grain
size, depth, slope, slope of slope, distance from shore, signed distance from shelf, chlorophyll, and turbidity.
Although transformation is not strictly necessary for MaxEnt, we found that transforming predictors improved
cross-validation model performance. Eighty percent of the hard bottom presence points were used to build
(train) the model and 20% of the points were randomly withheld to test the model. MaxEnt is more robust than
regression techniques to the inclusion of large sets of potential predictor variables (Elith et al., 2011), so no
model selection was carried out to reduce the size of this predictor set.

MaxEnt provides three post-hoc assessments of the relative importance of predictor variables. First, the MaxEnt
program provides a summary of how much each predictor contributes to the gain of the model, accumulated
for each predictor over the course of the training algorithm. Second, the MaxEnt program randomly permutes
the values for each predictor (one at a time) and determines the resulting decrease in the area under the
training model receiver operating characteristic curve (AUC). This provides a measure of how strongly the
model depends on each predictor. Third, the MaxEnt program estimates predictor importance using a jackknife
approach, in which it re-runs the model for each predictor, first building the model with all variables except
the predictor of interest, and then building the model with only the predictor of interest. If a predictor is highly
correlated with the other predictors, withholding it will have little impact on model performance. Therefore, an
important and non-redundant predictor will have high explanatory power by itself and its omission from the
model will result in a significant reduction in predictive power.




The final map of the “hard bottom occurrence likelihood index” consisted of a logistic transformation of MaxEnt’s
raw output to produce a smooth index between 0 and 1 (this is the default output of the MaxEnt program).
It is related to the probability of occurrence, but is not strictly a probability (Elith et al., 2011). It should be
considered an index of the relative likelihood of hard bottom occurrence, rather than a strict measure of the
probability of encountering hard bottom. All of the issues and caveats related to interpretation of ecological
models based on presence-only data are applicable (Elith et al., 2011).

3.3.5. Model Validation

The performance of mean grain size and sediment composition models was evaluated by two methods: leave-
one-out cross-validation and qualitative comparison to an independent sidescan sonar backscatter dataset.
Leave-one-out cross validation of kriging predictions was performed in ESRI Geostatistical Analyst (ESRI
2011a) as described in Goovaerts (1997). Cross-validation statistics were calculated as described in ESRI
(2011b).Qualitative comparisons to acoustic backscatter data followed Goff et al. (2008). Model prediction
maps were presented alongside existing 100-120 kHz backscatter data collected by USGS in the New York
Bight region (Schwab et al., 2000; Schwab et al., 2002) and visually interpreted. In general, acoustic backscatter
intensity is lower where there are fine sediments and higher where there are coarse sediments (Ferrini and
Flood, 2006; DeFalco et al., 2010).

In addition to qualitative comparison with acoustic backscatter data, the hard bottom occurrence model
performance was evaluated using cross-validation on the 20% of data withheld from training. Cross-
validation performance was evaluated using the Area-Under-Curve (AUC) statistic of the receiver operating
characteristic (ROC)-like MaxEnt output (Fielding and Bell, 1997). Traditional ROC curves plot the true positive
rate (sensitivity) versus the false positive rate (1 — specificity) for the range of potential threshold values, with
the AUC statistic providing a measure of how well the model maximizes the true positive rate for low values of
the false positive rate. The AUC statistic ranges from 0.5 (no better than random) to 1.0 (a perfect prediction).
An AUC statistic greater than 0.75 is generally indicative of a potentially useful model, and ROC curves for
high performing models will approach the upper left corner of the plot (Fielding and Bell, 1997; Peterson et al.,
2007). The ROC-like analysis used by MaxEnt differs in that it substitutes the fractional predicted area for the
specificity since there is no absence data from which to measure specificity (the true negative rate). As a result
the maximum achievable AUC is less than one (Phillips et al., 2006).

3.4. RESULTS AND DISCUSSION

3.4.1. Mean Grain Size

Model Predictions

The model of mean grain size extended just past the continental shelf edge and provided predictions of mean
grain size for the majority of the study area. The model did not extend into Long Island Sound (LIS) because
Goff et al. (2008) did not include LIS in their quality-controlled dataset. An additional reason for excluding LIS
was that the geostatistical model developed for the open ocean system (most of the study area) would not
have applied to the geomorphologically distinct, enclosed Long Island Sound system. The model did not extend
far past the continental shelf edge due to lack of sufficient sampling effort. The model predicted that much of
the seafloor is covered by sediment with a mean grain size characteristic of coarse to medium sand (0-2 o),
with areas having mean grain size characteristic of finer sand and silt (4-6 @) within the upper reaches of the
Hudson Shelf Valley, offshore of the shelf break, and in the area of the Block Island Delta and Block Island
Valley. The model predicted that mean grain sizes characteristic of coarse to medium sand covered ~60% of
the study area, mean grain sizes characteristic of fine to very fine sand covered ~32% of the study area and
mean grain sizes characteristics of silt covered ~8% of the study area (Figure 3.1, Figure 3.2, Table 3.3).

Model Uncertainty

Model standard error ranged from ~1.2 ¢ units for grid cells with a very high density of seafloor surveys
to ~1.6 @ units for grid cells farthest from survey locations, such as the area farthest offshore (Figure 3.3).
Model uncertainty of this magnitude corresponds to theoretical 95% confidence intervals (+1.96*standard
error) ranging from the mean grain size prediction + 2.4 ¢ units in densely surveyed areas to the prediction +
3.2 @ units where surveys were more sparse. For example, a mean grain size prediction of 1 ¢ in a densely
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Figure 3.1. Predicted mean grain size of surficial sediments from Kriging interpolation of mean grain size data in the Mid-Atlantic Bight.
Mean grain size is in ¢ units, where ¢ = -log,(mean grain diameter in mm). Data courtesy of J. Goff (University of Texas at Austin),
derived from USGS usSEABED database (Reid et al., 2005).

surveyed area could have a theoretical 95% confidence interval of (-1.4 @, 3.4 ). In this case, the mean grain
size prediction corresponds to coarse sand, but the confidence interval limits range from very fine pebbles to
very fine sand. Given that sediment surveys in areas offshore of the continental shelf break were quite sparse
and prediction accuracy in these areas is worse than in nearshore areas, model predictions offshore of the
shelf break should be used with caution.

The predicted probabilities of exceeding mean grain size thresholds of 25.6 cm (¢ < -8, boulders and larger),
6.4 cm (¢ < -6, cobbles and larger), 2 mm (¢ < -1, pebbles and larger), and 0.062 mm (¢ < 4, very fine sand
and larger) generally followed spatial patterns in mean grain size predictions. This is expected since these
probability calculations assume a normal distribution of sediment grain sizes around the mean. The probabilities
of having a mean grain size less than -8 ¢ (boulders and larger) or less than -6 ¢ (cobbles and larger) were
essentially zero across the entire study area (Figure 3.4a, b). This does not mean that boulders and cobbles
do not occur, only that they are almost never the mean grain size over any appreciable area (they are always
mixed with other, finer sediment types), and/or they are very erratic in their occurrence (occurring only as
isolated departures from the mean). The probability of having a mean grain size less than -1 ¢ (pebbles and
larger) was very low across most of the study area, but there were areas of higher probability corresponding
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Figure 3.2. Distribution of predicted surficial sediment mean grain size classes, derived from kriging interpolation of mean grain size
data in the Mid-Atlantic Bight. Mean grain size classes are defined based on Wentworth (1922). Data courtesy of J. Goff (University of
Texas at Austin), derived from USGS usSEABED database (Reid et al., 2005).

Table 3.3. Total area and percent area of predicted mean grain size classes in the study area.
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Pebbles 4 mm-—6.4cm 1 0
Granules 2mm -4 mm 12 0
Very Coarse Sand 1 mm—2mm 38 0.1
Coarse Sand 0.5 mm—1mm 4,978 12.2
Medium Sand 0.25 mm — 0.5 mm 19,613 47.9
Fine Sand 0.125 mm — 0.25 mm 8,607 21.0
Very Fine Sand 0.062 mm — 0.125 mm 4,402 10.8
Coarse Silt 0.031 mm — 0.062 mm 2,525 6.2
Medium Silt 0.016 mm — 0.031 mm 734 1.8
Fine Silt 0.008 mm — 0.016 mm 0 0
Very Fine Silt 0.004 mm — 0.008 mm 0 0
Clay 0.001 mm — 0.004 mm 0 0

a - from Wentworth (1922)

b - ¢ = -log,(mean grain diameter in mm)
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Figure 3.3. Surficial sediment mean grain size prediction standard error (in @ units, ¢ = -log,[mean grain diameter in mm]) from kriging
interpolation of the mean grain size data in the Mid-Atlantic Bight. Data courtesy of J. Goff (University of Texas at Austin), derived from
USGS usSEABED database (Reid et al., 2005).

well with the areas mapped as pebbles by the mean grain size prediction model (Figure 3.1, Figure 3.4c). The
probability of having a mean grain size less than 4 ¢ (very fine sand and larger) was high across the study
area, with areas of near zero probability corresponding to areas that were mapped as silt (Figure 3.1, Figure
3.4d).

Probabilities for each mean grain size threshold were also mapped with values standardized by the maximum
probability values (Figure 3.5). These maps emphasize areas where the mean grain size has the highest
relative likelihood of exceeding the indicated thresholds. Panels (a) and (b) of Figure 3.5 should be interpreted
with some caution since the highest probabilities are near zero for thresholds of less than -8 ¢ (boulders and
larger) or less than -6 ¢ (cobbles and larger).

Model Validation

Leave-one-out cross-validation of the mean grain size prediction model yielded a root-mean-square error
(RMSE) of 1.4 ¢, which was reasonable given the magnitude of grain size measurement error (estimated
to be on the order of 1 ¢ unit; J. Goff, University of Texas at Austin, personal communication, F




2011) and allowing for unresolved small-
scale variance and model specification
error. Cross-validation also indicated that
the prediction errors were unbiased (mean
standardized prediction error was near
zero) and the assessment of prediction
uncertainty was valid since the root-mean-
square standardized error was close to one

(Table 3.4).
Although the mean grain size prediction 19 (d)Probability of Mean Grain Size <49
model was mapped at a considerably lower . 3 T i e [ - A

spatial resolution (30 arc-second grid cells
have an average linear dimension of ~800-
900 meters in the study area) than the
USGS acoustic backscatter data (4 m grid
cells) from Schwab et al. (2002), comparison
of the mean grain size prediction map to
the USGS backscatter data provided a
qualitative assessment of the accuracy of
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the predictions for overlapping areas. In ' Kiometers
. . . === . o s 100 15 200 N
general, areas of high backscatter intensity 1. .2 NYPlanningArea ¢ = -log (mean grain diameter in mm)  L——t——l——1 I
. . . — Shelf Edge (~200 m depth) 2 0 20 40
(lighter shades) were associated with areas Nautical Miles

predicted to have coarser sediments, such
as the areas labeled A and C in Figure 3.6. ,
Also, the Hudson Shelf Valley (area labeled ik
B in Figure 3.6) had low backscatter intensity -
and was predicted to have finer sediments.
These comparisons were consistent with
the conclusions of Ferrini and Flood (2006)
and De Falco et al. (2010), who found that
acoustic backscatter intensity is generally
lower where there are fine sediments and
higher where there are coarse sediments.
However, the matchup is clearly not
perfect, and without detailed calibration of
backscatter to ground-truth samples it is
difficult to say whether deviations between
the two maps are due to inaccurate model
predictions or variation in the backscatter
surface not associated with sediment
variation.

(a) Probability of Mean Grain Size < -8 ¢

T 5 By

="

(b) Probability of Mean Grain Size < -6 ¢

----------
----

3.4.2. Sediment Composition

Kilometers

Model Predictions 1™ " S NY Planning Area - g (mean grain diameter n mm) 0o 50 100 150 200 N
Models of sediment composition provided = —— sheifEdge (~200 m depth) o 0 20 40 A

. . Nautical Miles
predictions for most of the study area, from Figure 3.4 (top). Maps of the probability that surficial sediment mean grain
the SOUtherr_‘ shore of Long |S!and’ where  size (in ¢ units, ¢ = -log [mean grain diameter in mm]) is less than threshold
survey density was greatest, to just past the values of (a) -8 ¢ (boulders and larger), (b) -6 ¢ (cobbles and larger), (c) -1 ¢
continental shelf edge (Figure 3.7). (pebbles and larger), and (d) 4 ¢ (sand and larger). Figure 3.5 (bottom). Same
as Figure 3.4, with probability values standardized by maximum probability
. . of each corresponding threshold map. Values were adjusted to emphasize
The mud f.ra.ctlon .mOdel predicted that areas with the highest probabilities of exceeding each of the mean grain size
floor surficial Iments wer mposed  thresholds. Data courtesy of J. Goff (University of Texas at Austin), derived
from USGS usSEABED database (Reid et al., 2005).
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Figure 3.6. Comparison of overlapping portions of the (a) USGS acoustic backscatter data (from Schwab et al., 2002) and (b) surficial
sediment mean grain size prediction (in ¢ units, ¢ = -log,[mean grain diameter in mm]). In general, higher backscatter intensity indicates
coarser sediments (e.g., coarse sand, pebbles) while lower backscatter intensity indicates finer sediments (e.g., sand and silt). Mean
grain size data courtesy of J. Goff (University of Texas at Austin), derived from USGS usSEABED database (Reid et al., 2005).
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Figure 3.7. Locations of usSEABED sediment survey data in the study area. Data courtesy of USGS usSEABED database (Reid et
al., 2005).

mostly of mud in several areas, including in the Hudson Table 3.4. Cross-validation statistics for the mean grain
Shelf Valley, in and around the Hudson Canyon, along SiZ€ model.

the continental shelf slope, and over a large swath south _
of Martha’s Vineyard and Rhode Island between the 50 m  [a.oc -0.0007
and 100 m contours (Figure 3.8a). The sand fraction model .
predicted that surficial sediments were composed mostly esihiodia SUEEIE el (RIEE el
of sand throughout most of the study area (Figure 3.8b), | Mean Standardized Prediction Error | -0.0004
with the exception being those areas predicted to have [Root-Mean-Square Standardized Error | 1.0920
mud-dominated sediments by the mud fraction model. The

gravel fraction model predicted that surficial sediments were

composed mostly of gravel in only a few small areas (Figure 3.8c). These areas corresponded to those mapped
as pebbles or granules by the model of mean grain size (Figure 3.1). Under Folk’s classification scheme (Folk
1954, 1974), just over half of the study area was mapped as gravelly sand or slightly gravelly sand (Figure
3.8d, Table 3.5). Another ~30% of the study area was mapped as having a mix of mud and sand with slight
amounts of gravel. An almost negligible area was mapped as having predominantly gravel.
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(d) Predicted Sediment Texture Classes
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Figure 3.8. Surficial sediment composition maps from kriging interpolations of usSEABED sediment composition data in the Mid-Atlantic
Bight. (a) Predicted mud percentage, (b) predicted sand percentage, (c) predicted gravel percentage, (d) distribution of predicted
sediment texture classes. Sediment texture classes were assigned based on the ratios of the predicted mud, sand, and gravel fractions
according to Folk (1954, 1974). Data courtesy of USGS usSEABED database (Reid et al., 2005).




Model Uncertainties

For all three sediment types, model
uncertainties were lowest in densely
surveyed areas and highest in unsurveyed
areas, particularly farthest offshore of the
continental shelf break. Model prediction
standard error was lowest for the gravel
fraction model (Figure 3.9), which was
the least encountered sediment type in
sediment samples. As with the mean grain
size model, given that sediment surveys
in areas offshore of the continental shelf
break were sparse and prediction accuracy
in these areas is worse than in nearshore
areas, model predictions offshore of the
shelf break should be used with caution.

Model Validation

Cross-validation of the sediment composition
models yielded RMSE values ranging from
23% for gravel to 32% for sand (Table 3.6).
The somewhat high RMSE values were
not surprising given the heterogeneous
nature of the data (laboratory analyzed vs.
interpretation of written descriptors) and
the potential bias toward finer particles for
some of the sediment surveys (discussed in
Goff et al., 2008). Cross-validation indicated
that prediction errors were unbiased (mean
standardized prediction errors were near
zero) and the assessments of prediction
uncertainty were valid since the root-mean-
square standardized errors were close to one
(Table 3.6). Given the relatively high RMSE
values, all three sediment composition
models should be used with caution and
with the knowledge that available data can
only provide moderately reliable predictions
at investigated spatial scales. Although there
are discernible broad-scale spatial patterns,
the composition of sediment in any given
point sample is highly variable and difficult
to predict.

Table 3.5. Total area and percent area of predicted sediment texture classes

in the study area.

“gravel < 0.01%,

sand : mud > 9:1”

g sand : mud < 1:9” E L
slightly gravelly | “0.01-5% gravel,
mud sand : mud < 1:9” «0g 140
“5-30% gravel,
gravelly mud sand - mud < 1:1” 788 1.9
slightly gravelly | °:01-5% gravel,
gntly 9 Y sand : mud from 5158 12.6
sandy mud 1910 1:1”
“gravel < 0.01%,
sandy mud sand : mud from 918 2.2
1:9to 1:1”
“gravel < 0.01%,
s2me sand : mud > 9:1” v 1
slightly gravelly | “0.01-5% gravel,
sand sand : mud > 9:1” g e
“5-30% gravel,
gravelly sand sand : mud > 9:1" 12,353 30.2
slightly gravelly | °:01-5% gravel,
mgddygand Y| sand : mud from 6,812 16.7
y 1:1t0 9:1”
ravelly mudd S el
gand y y sand : mud from 3,488 8.5
1:1 to 9:1”
“gravel < 0.01%,
muddy sand sand : mud from 472 1.2
1:1 to 9:1”
gravel > 80% gravel 0 0
“30-80% gravel,
muddy gravel sand - mud < 1:1” 11 0
“30-80% gravel,
e sand : mud from 87 0.2
gravel 1:1 to 9:1”
“* o 0,
sandy gravel S B I, 211 0.5

a - from Folk 1954, 1974.

Table 3.6. Cross-validation statistics for the sediment composition models.
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The gravel fraction prediction model
was compared to USGS acoustic
backscatter data from Schwab et

al. (2002) to provide a qualitative |22 -0.000004 -0.000420 0.000140
accuracy assessment of predictions EOO""VILGJQ-ESQUWG 0.266200 0.320800 0227200
for overlapping areas. Although the rror ( ) :

gravel fraction model was mapped |Wean Blandardized | 4 000076 | -0.000620 0.000340
at a considerably coarser spatial rediction Error

resolution (~800-900 m grid cells) | RootMeanSduare | 4 gs5400 | 0.943400 1.005900
than the backscatter data (4 m grid [Standardized Error
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cells), a general spatial correspondence was observed over
broad spatial scales. Areas of high backscatter intensity (lighter
shades) were generally associated with areas predicted to be
gravelly (A and C in Figure 3.10) and the narrow region of low
backscatter intensity in the Hudson Shelf Valley (B in Figure
3.10) roughly corresponded to areas predicted to be sand or
mud. As noted previously, the matchup is clearly not perfect,
and without detailed calibration of backscatter to ground-truth
samples it is difficult to say whether deviations between the two
maps are due to inaccurate model predictions or variation in
the backscatter surface not associated with sediment variation.

3.4.3. Hard Bottom Occurrence

Model Prediction

The MaxEnt model output indicated a relatively high likelihood of
hard bottom occurrence in nearshore areas and in the vicinity of
canyon features just offshore of the continental shelf break (e.g.,
Hudson Canyon) (Figure 3.11). The model also corresponded
well to the mean grain size model in that it predicted a low
likelihood of hard bottom occurrence in areas mapped as fine
particles. It is important to note that the model does not provide
any indication of the size of predicted hard bottom features,
and does not necessarily relate to the proportion of substrate
that is hard bottom at a given location. Rather, the model
provides a relative index of the likelihood that at least one hard
bottom point would occur if an area was sampled a sufficient
number of times. An area predicted as having a high likelihood
of hard bottom occurrence may in fact be dominated by non-
hard bottom substrate. For example, the nearshore areas in
the study area were predicted to have a high likelihood of hard
bottom occurrence by the MaxEnt model, but the mean grain
size and sand fraction models suggest they are predominantly
sandy. Taken together, the models suggest that the nearshore
areas have a surface composed primarily of sandy sediments
but with widely distributed (although not abundant) hard
bottom components such as large boulders, bedrock, or highly
consolidated sediments. This example stresses the importance
of supplementing information derived from one aspect of
sediment character (e.g., mean grain size) with additional
information to provide a more complete characterization of
surficial sediment distribution.

The MaxEnt model output indicated that the predictor variables
distance from shore, slope of slope, depth, and signed
distance from shelf were most important in determining the
distribution of hard bottom presences, relative to the other
predictors included in the set, when measured in terms of their
contribution to regularized model gain (Table 3.7). According to
the jack-knifing outputs, signed distance from shelf, distance
from shore, and depth had the greatest individual predictive
power (Figure 3.12). The model built without signed distance to
shelf showed a significant decrease in gain, which suggested
that this predictor was important and not redundant (i.e., not
highly correlated with other predictors). Interestingly, surface
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Figure 3.9. Standard error maps for (a) predicted mud
percentage, (b) predicted sand percentage, and (c)
predicted gravel percentage of surficial sediments
from kriging interpolations of usSEABED sediment
composition data in the Mid-Atlantic Bight. Data
courtesy of USGS usSEABED database (Reid et al.,
2005).
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Figure 3.10. Comparison of overlapping portions of the (a) USGS acoustic backscatter data (from Schwab et al., 2002) and (b)
the predicted gravel percentage in surficial sediments. In general, higher backscatter intensity indicates coarser sediments (e.g.,
gravel) while lower backscatter intensity indicates finer sediments (e.g., sand and mud). Sediment survey data courtesy of USGS
USSEABED database (Reid et al., 2005).
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Figure 3.11. MaxEnt model of hard bottom occurrence. Map depicts the predicted relative likelihood of hard bottom occurrence from the
maximum entropy model. Data courtesy of USGS usSEABED database (Reid et al., 2005), NOS Hydrographic (NOAA NGDC 2011),
and The Nature Conservancy (Greene et al., 2010; J. Greene, The Nature Conservancy, personal communication, March, 2011; M.
Fogarty, NMFS, personal communication, March, 2011).

chlorophyll concentration had low predictive power by Table 3.7: Relative contributions of predictor variables to
; ; el ; the MaxEnt model for hard bottom occurrence (based on
!tself, but |’Fs omission resulted in the greatest decrease cumulative regularized gain estimates).

in the predictive power of the model. This suggested that

important information may be contained in the interaction _
of surface chlorophyll concentration with one or more of

the other predictors. distance from shore 26.4
slope of slope 17.6
Model Validation depth 16.0
Thff MaxEnt R'gc-ltik? 'ana,lolﬁg ifn(?iggéed g?ochrE%de:‘ signed distance from shelf 15.0
erformance, with a trainin of 0.832 and tes o —
0.730 (Figure 3.13). This indicatos that ~73% of the fime | Meangrain size 89
a randomly selected true hard bottom location will have a  [512P€ 6.8
higher predicted probability of hard bottom presence than | Surface chilorophyll concentration 4.1
would any randomly selected location in the study area. turbidity 3.3

bathymetric variance 1.9
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Figure 3.12. Jackknife test of predictor variable importance for the MaxEnt model of hard bottom occurrance. Blue bars indicate
regularized training gain for models built with each predictor individually. Green bars indicate regularized training gain for models built
with all other predictors and can be compared to the red bar, which indicates the regularized training gain for a model built using all
the predictors, to determine how much the regularized training gain decreases with the omission of each predictor. Predictor variables:
bathy = depth, chl = sea surface chlorophyll concentration, dist = distance from shore, meanphi = sediment mean grain size, sdist =
signed distance from shelf, slope = slope, slpslp = slope of slope, stddev = bathymetric variance, tur = turbidity.
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Figure 3.13. Receiver operating characteristic-like (ROC-like) curve for the MaxEnt model of hard bottom occurrence.
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Although the model was mapped at a considerably lower spatial resolution (30 arc-second grid cells have an
average linear dimension of ~800-900 m in the study area) compared to the USGS acoustic backscatter data
(4 m grid cells) from Schwab et al. (2002), comparison of the predicted hard bottom occurrence likelihood
index map to the USGS backscatter data revealed some qualitative spatial association between areas of high
backscatter intensity (lighter shades) and areas predicted to have a high probability of hard bottom presence
by the model (Figure 3.14).

3.5. Limitations to Interpretation

Mean Grain Size and Sediment Composition Models

As with the bathymetry model (Chapter 2), the density of usSEABED survey locations affected mean grain
size and sediment composition model uncertainty estimates. In the study area, survey density was highest
nearshore and was considerably lower in offshore areas. Although the mean grain size model and sediment
composition models seemed to capture meso-scale (10’s to 100’s of km) spatial patterns across the study area
(e.g., predictions of silt in major depositional areas), the models likely missed finer scale patterns in sediment
distribution, especially in areas where the spatial density of sampling was low. The length scale of features
that can be resolved will generally be no shorter than twice the local average distance between samples.
Regardless of sample density, because the spatial resolution of the output model grid is approximately 800
m, the minimum length scale of features that can be resolved is approximately 1.6 km. While sediment survey
density in nearshore areas may support the development of a model at a finer spatial resolution, areas with
fewer survey data (such as offshore of the continental shelf break) limit the resolving power of the model. As
a result, none of the models presented in this chapter can be used to directly predict the locations of smaller
features such as hard bottom patches or cold water coral reefs.

There are also limitations to the reliability of the mean grain size and sediment composition models that are
related to issues with sediment sample processing. As described previously and discussed in detail by Goff et
al. (2008), the laboratory-based analyses used to generate the usSEABED extracted data often exclude hard
components like shell and gravel and may therefore introduce a bias toward finer particles. Goff et al. (2008)
found that a simple correction (subtracting 0.5 ¢ from extracted data) removed the average bias between
extracted and parsed mean grain size datasets. We used that bias correction, but note that it may not apply
equally across the whole study area or all time periods and surveys. The model could still have under-predicted
coarse sediments in some areas dominated by extracted data. Moreover, even parsed data may exhibit a bias
against very large grains (especially cobbles and boulders) if they were excluded by mechanical sampling
devices or removed in pre-processing. For the sediment composition models, we used both extracted and
parsed datasets without applying any bias correction to account for the exclusion of hard components in the
extracted data. As a result, the models were likely biased toward finer particles and may under-predict the
fraction of gravel particles.

Other issues arise from the long time span over which samples were collected. Samples in the usSEABED
database were collected over multiple decades, and thus variability in grain size and sediment composition
data likely includes a temporal component in addition to spatial variability. It is possible that a sample collected
in 1970 no longer reflects the true state of the seafloor, but it was used in the model as such. Also, positional
uncertainty for survey locations was considerably greater for data collected decades ago.

Mean grain size is a suitable measure of sediment character at survey sites where sediment composition has a
unimodal distribution, since mean grain size will represent the typical size of sediment particles in the sample.
However, if the distribution of sediments in a sample is bimodal or multi-modal, then mean grain size will not
indicate the typical size of sediment particles at the survey site (and in fact very few particles in the sample
may be this size). For example, the mean grain size for a sample of gravelly-mud sediments could correspond
to sand, even though sand may not be part of the sample. The mud, sand, and gravel fraction models can be
used conjunction with the mean grain size models to mitigate this limitation.

Given that previous maps of sediment composition consisted of point data depicting the dominant sediment
type at each location (e.g, Williams et al., 2006), the maps developed here represent a considerable advance
over previously available information. However, given the limitations associated with the use of the usSEABED
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Figure 3.14. Comparison of overlapping portions of the (a) USGS acoustic backscatter data (from Schwab et al., 2002) and (b) the
predicted hard bottom occurrence likelihood index. Higher backscatter intensity indicates coarser sediments (e.g., gravel) while lower
backscatter intensity indicates finer sediments (e.g., sand and mud). Hard bottom data courtesy of USGS usSEABED database, NOS
Hydrographic database (NOAA NGDC 2011), and The Nature Conservancy (Greene et al., 2010; J. Greene, The Nature Conservancy,
personal communication, March, 2011; M. Fogarty, NMFS, personal communication, March, 2011).
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sediment data, the maps of predicted mean grain size and sediment composition fractions should be used
primarily to describe general patterns in sediment distribution. Maps of model uncertainty can be used to
identify areas where additional survey data are needed and for risk analyses related to decision-making under
uncertainty.

Hard Bottom Occurrence Model

The MaxEnt model of the likelihood of hard bottom occurrence performed well in the cross-validation ROC-like
analysis. However, there are a number of limitations to the interpretation of this presence-only model, and it
should be considered an experimental product.

First, the environmental predictor variables used to characterize hard bottom locations were at a considerably
coarser spatial resolution than most hard bottom features on the seafloor (e.g., individual boulders, patches
of exposed bedrock). As a result, the value associated with a given hard bottom point for a predictor may
misrepresent the actual value at that precise location. Finer-scale environmental predictor data would enable
the model to characterize hard bottom locations more accurately in terms of the environmental predictors, and
as a result model predictions would be more reliable.

Second, MaxEnt solutions using presence-only data require that sampling effort is distributed homogenously
over the study area or that biases are known and integrated into the model. We know that sampling effort was
heterogeneously distributed and that there were significantly more samples collected close to shore, but we
don’t know exactly how effort is distributed. Because we were concerned about sample bias we excluded a
large number of hard bottom locations in nearshore areas. Sample bias can result in model predictions that are
overfit to more densely surveyed areas (Phillips et al., 2009; Elith et al., 2011). Because of limitations related to
sample bias and the inability of MaxEnt models to identify prevalence, Elith et al. (2011) suggest that presence-
absence modeling methods should be used if presence-absence survey data is available. However, reliable
hard bottom absence data was not available in the study area.

Third, unlike the mean grain size and sediment composition models, the MaxEnt output did not provide a
spatial map of prediction uncertainties. Therefore, it was not possible to assess changes in prediction certainty
associated with the location of input data or its variability. Lastly, the model did not provide any indication of
the size of predicted hard bottom features. Rather, the model provided only an indication of the likelihood of at
least one hard bottom point sample occurring at a given location. This, of course, depends on sample effort —
but as previously noted the heterogeneity in effort is not explicitly included in the model.

Additional fundamental limitations to models developed from presence-only data are discussed in detail by Elith
et al. (2011); anyone interested in quantitative application of the hard bottom model results should thoroughly
read and understand the limitations discussed in that article.

Previous maps of hard bottom locations in the study area consisted of point data depicting survey locations
where hard bottom features were observed, with no indication of the relative likelihood of occurrence across
the study area (Greene et al., 2010). Therefore, in spite of the limitations associated with presence-only
modeling, the model of hard bottom occurrence developed here provides additional information at unsampled
locations that has previously been unavailable, and may be useful to spatial planning until detailed hard bottom
distribution data can be collected.
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