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6.1. SuMMarY 
In this chapter we develop and present maps of 
the seasonal and annual distributions of selected 
seabird species and species groups in the New 
York study area (the NY Bight, Figure 1.2). 
The maps are based on seabird-environment 
statistical models fit to visual shipboard 
seabird observational data collected as part 
of a standardized survey program from 1980-
1988. Models are developed for single species 
and for species groups, and then combined to 
produce “hotspot” maps depicting multi-species 
abundance and diversity patterns. In addition to 
a large geodatabase of standardized offshore 
seabird surveys, the predictive models developed 
here make use of spatially explicit environmental 
data products from long-term archival satellite, 
oceanographic, hydrographic, and biological 
databases that were developed and discussed in Chapter 4. Seabird distribution maps produced include 
seasonal and annual relative indices of occurrence and abundance, with associated maps depicting metrics of 
certainty. All information is mapped on the same 30 arc-second (less than one kilometer) horizontal resolution 
grid used to characterize surficial sediments and ocean habitat variables in Chapters 3 and 4. 

High-resolution, contiguous predictive maps of seabird distributions and maps depicting accuracy of model 
predictions were two critical information gaps identified in discussions with New York State’s Department of 
State, Ocean and Great Lakes Program. These products are expected to be useful contributions to offshore 
spatial planning, particularly for activities that may affect seabirds or their habitats. 

6.2. DefiNitioN of SeaBirDS 
In this chapter we operationally define seabirds as all avian species regularly sighted over marine waters. Given 
this definition, most species included in this chapter belong to the following taxonomic orders: Charadriiformes 
(gulls, terns, auks, phalaropes), Pelecaniformes (gannets, pelicans, and cormorants), and Procellariiformes 
(shearwaters, fulmars, petrels). These species generally derive the majority of their nutrition from marine 
productivity. Some species in the orders Anseriformes (ducks, geese, swans) and Gaviiformes (loons) are 
also included in our operational definition, but most seafaring species in this order rely only partially on the 
marine environment. Many of the species presented in this chapter, especially those preferring more nearshore 
habitats, also fall under various definitions for shorebirds or waterbirds. We also note that although some 
Falconiformes (falcons, osprey) can be pelagic, and some passerine birds can be observed offshore from time 
to time, we did not include them in this study due to lack of data. 

1 National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Center 
for Coastal Monitoring and Assessment, Biogeography Branch, 1305 East West Hwy, SSMC-4, N/SCI-1, Silver Spring, MD 20910-
3281. 

2	 Consolidated Safety Services, Inc., 10301 Democracy Lane, Suite 300, Fairfax, Virginia 22030 under NOAA Contract No. 
DG133C07NC0616 

3 	 EWHALE lab, Biology and Wildlife Department, Institute of Arctic Biology, University of Alaska-Fairbanks, Fairbanks, Alaska 99775-
7000. 

†	 Author contributions: BPK led design of research, obtained and processed data, carried out all analyses, interpreted results, and 
wrote the document. CM assisted with research design, data processing, results interpretation, and writing. FH contributed to the 
discussion and interpretation of results. 
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Image 6.1. Cory’s Shearwater and Wilson’s Storm-Petrels. 
Photo by: David Pereksta, BOEM 
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6.3. SeaBirD ecologY iN the New York Bight 
Seabirds are a conspicuous and ecologically important component of coastal and marine ecosystems. They 
are typically long-lived (15-70 years), move over broad ranges and feed at a variety of trophic levels. As 
such, they are responsive to changes in the marine and coastal environment and can be useful indicators 
of cumulative biological, physical and chemical changes in marine ecosystems. However, because seabirds 
are highly mobile, long-lived, and occupy a dynamic environment, observations and predictive models of their 
spatial and temporal distributions present a formidable challenge (see Section 6.6.). 

The New York study area is located along the Atlantic Flyway, one of four major American migration routes 
for migrating waterfowl, shorebirds, predatory birds, songbirds and seabirds. Along the Flyway, coastal and 
marine habitats provide shelter and food for birds at stopover sites between wintering areas (generally to 
the south) and breeding areas (generally to the north, but some species, such as the Great Shearwater, 
Sooty Shearwater, and Wilson’s Storm-Petrel, are southern hemisphere breeders). The Flyway is generally 
considered to follow the Atlantic shoreline, but some species like the Manx Shearwater and Arctic Tern migrate 
out at sea, far from land (Guilford et al., 2009; Egevang et al., 2010). 

Most species are temporary residents gathering food in pelagic and coastal habitats as they overwinter during 
the non-breeding season, stopover during migration, or breed during the summer months. The community of 
seabirds in the study area is constantly changing and a dominant species in one season may not be observed 
in other seasons. For instance, Wilson’s Storm-Petrel is one of the most abundant species in the summer 
months, but is practically absent from surveys in the winter. 

Most species found in the study area breed elsewhere, but at least 10 seabird species breed along New 
York’s mainland shores, on Long Island and on a few smaller offshore islands (New York State Ornithological 
Association, Breeding Bird survey). The main breeding season lasts from May to early September (Forbush, 
1929; Bull, 1974; Harrison, 1978), during which time seabirds use the study area to acquire food critical to 
brood success. Breeders usually arrive earlier and stay later than the breeding seasons to prepare for breeding 
and migration to overwintering sites. In the maps shown later in this report, the breeding period is best reflected 
by “summer” data. 

Seabirds occupy an assortment of ecological niches and thus exhibit a range of spatial distributions. Some 
species spend the majority of time along coastal shorelines, while others live offshore coming to land only to 
breed. As in terrestrial ecosystems, some marine areas are more important than others; however few regions 
of the ocean are entirely free of seabirds at all times. “Hotspots,” or “persistent aggregations” of seabirds, 
defined here as areas where higher-than-average abundance (or diversity) of seabirds is frequently observed, 
are often located where food availability is high and/or where the required effort to obtain food is comparatively 
low. Elevated food availability can be natural (e.g., areas of high ocean productivity) or anthropogenic (e.g., 
areas of fishery discards and human refuse disposal). Hotspots of abundance and/or species diversity may 
also form near breeding areas and along migratory pathways. Due to the strong seasonal signal in the NY 
marine and coastal environment, the location of seabird hotspots is likely to vary not only among species but 
among seasons even for the same species. 

Understanding environmental, biological/ecological and anthropogenic processes that affect seabird behaviors 
is critical to understanding seabird distributions. Many studies have shown a strong correlation between seabird 
distribution and biophysical variables, including sea surface temperature, mixed-layer depth (stratification), 
the location of prey and subsurface predators, weather, and distance to nesting sites (e.g., Schneider 1990, 
1997; Ballance et al., 2001; Daunt et al., 2003; Yen et al., 2004; Friedland et al., 2012). In this chapter we take 
advantage of some of these environmental relationships to generalize from sighting data to make predictions 
about seabird occurrence and abundance at unsurveyed locations. 

In addition to biophysical variables, seabird communities are tightly linked to many human activities, including 
fishing, hunting, coastal development, shipping, and resource extraction. The present-day seabird community 
structure must be viewed in the context of both past and present conditions and impacts, both human and 
natural. For instance, humans have drastically altered the population levels of Common Terns and Herring 
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Gulls. Credible reports identify Common Tern 
nesting sites with hundreds of thousands of birds 
in the Northwest Atlantic in the late 19th century 
(Brewster, 1879). Now, the population consists of 
approximately 40,000 pairs, almost half of which 
are found in New York (Nisbet, 2002). Common 
Terns were hunted for use in the hatmaking 
industry in the late 19th century, but modern threats 
include habitat destruction and disturbance, 
chemical pollution, rat predation on eggs, and 
competition with expanding populations of large 
gulls often fed by byproducts of human activities 
(BirdLife International, 2012). In 1900 the U.S. 
Herring Gull population numbered 8,000 breeding 
pairs and was entirely located in Maine. This 
followed a long period during which the species 
was intensively hunted for eggs and feathers 
(Pierotti and Good, 1994). Now there are greater 
than 100,000 pairs and it is one of the most common species found in the New York study area (Andrews, 
1990). The increase is attributed to protection from hunting, increased waste from fisheries, and decreased 
competition for small fish and invertebrates, as human impacts reduced abundances of large top predators 
(Pierotti and Good, 1994). 

Interactions between fisheries and seabirds have been well documented worldwide, with both increases 
and decreases to regional seabird populations linked to fishing activity (Tasker et al., 2000; Furness, 2003; 
Tasker and Furness, 2003; Votier et al., 2004; Lotze and Milewski, 2004). Distributions are also affected; for 
example, discards from large-scale trawling operations can attract extremely large, but transient, aggregations 
of seabirds. Bartumeus et al. (2010) found that fishery discards distort seabird movement patterns at regional 
scales, and modify the natural way in which seabirds explore the seascape to look for resources. 

6.4. threatS to SeaBirDS 
Currently, the greatest threats to seabirds in the region are generally considered to be habitat destruction/ 
alteration, nesting disturbance, the direct (e.g., mortality in bycatch) and indirect (e.g., overfishing, lights) 
impacts of fisheries (Tasker et al., 2000; Votier et al., 2004), other seabirds (Drury, 1965), oil spills, and climate 
change (Riou et al., 2011). Since seabirds are mobile and interact with multiple environmental and anthropogenic 
stressors over vast geographic distances and long lifetimes, it is important to consider cumulative impacts and 
their synergies in evaluating threats to seabirds. 

Many species migrate long distances between breeding and wintering sites. Along the way they can cross 
multiple ecosystems and geopolitical boundaries. For example, the Arctic Tern migrates an average of 71,000 
km a year, crosses two oceans and flies adjacent to four continents (Egevand et al., 2010). Seabird movements 
also mean that seabirds are affected by environmental changes at local, regional and global scales. Examples 
of seabird threats that may occur outside of the study area, but impact populations in the study area, include 
watershed and coastal development, predators on nest sites, overfishing, bycatch, oil spills, and climate 
change. 

There is evidence that climate change may pose increasing threats to seabird populations in the future. 
Anthropogenic changes in primary and secondary productivity in the Northwest Atlantic have already propagated 
up the food chain, affecting seabird breeding success (Riou et al., 2011). Anthropogenic effects on food webs 
may interact with natural interdecadal variability in ocean climate and productivity and regional-to-global scale 
changes in the ocean-atmosphere system driven by human activities to cause serious cumulative impacts 
(Sandvik and Erikstad, 2008). Links between natural and human climate changes and seabird population 
dynamics are an active area of research (Sandvik and Erikstad, 2008; Riou et al., 2011). 
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Photo by: David Pereksta, BOEM 

Image 6.2. Wilson’s and Leach’s Storm-Petrels. 
Photo by: David Pereksta, BOEM 
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Potential impacts of offshore alternative energy production facilities (e.g., wind turbines, ocean thermal energy 
conversion, and marine hydrokinetic devices) on marine avifauna are also an active area of investigation. A  full 
review of the literature on offshore energy platform effects on seabirds is beyond the scope of this report. For 
useful entry points into the relevant literature, see Drewitt and Langston, 2006; Hueppop et al., 2006; Hatch 
and Brault, 2007; Allison et al., 2008; and Watts, 2010. The effects of offshore wind farms on birds are likely to 
be highly variable, and will  depend on a wide range of factors including: the type of construction, the habitats 
affected and the number and species of birds present (Drewitt and Langston, 2006). The principal potential 
impacts are thought to be: collision mortality, displacement of foraging areas and migration routes, and habitat 
change and loss from platform installation, operation and maintenance. Vulnerability to and likelihood of these 
impacts varies in a species, place and time-dependent manner (Allison et al., 2008). Spatial information on 
seabird abundance, diversity and habitat is therefore essential to reduce potential risks from offshore wind 
development. 
 
6.5. MaNageMeNt aND coNSer vatioN StatuS 
Several domestic laws, Executive
Orders and international treaties
provide protection for seabirds. Multiple [

species found in the study area are 
listed by state, federal and international 
conservation listing agencies as species 
of conservation concern because of 
declining or already small population. 
Table 6.1 lists species identified by 
the U.S. Fish and Wildlife Service as 
species of conservation concern in the 
mid-Atlantic that “without additional 
conservation actions, are likely to 
become candidates for listing under 
the Endangered Species Act” (USFWS, 
2008). 

Species listing under the Endangered 
Species Act (ESA) of 1973 can have 
significant impacts to offshore spatial 
management decisions. For instance, 
ESA prohibits federal agencies from 
authorizing, funding or carrying out 
actions that “destroy or adversely 
modify” designated critical habitat of 
species on the federal endangered 
species list. This authority applies to 
all federal waters and although this 
regulatory aspect does not apply 
directly to State waters, large-scale 
development projects typically require a 
federal permit. Critical habitat protection 
is only one provision of the ESA. Others 
include take prohibitions and a requirement that Federal agencies consult on potential adverse effects to listed 
(threatened or endangered) species pursuant to Section 7. In addition, non-federal entities are required to get 
a Section 10(a)(1)(B) permit if their proposed action will result in take of a listed species. A full discussion of 
the implications of the ESA for marine and coastal activities that may impact listed bird species is beyond the 
scope of this document; the reader is referred to Baur and Irvin (2009) as an entry point and recent review of  
ESA law and policy. 

Table 6.1. Birds of conservation concern identified by the U.S. Fish and Wildlife 
Service for the New England/Mid-Atlantic 	 Coast (Bird Conservation Region 30 
BCR30]) and birds listed under the Endangered Species Act (ESA). Species 
shaded in grey are commonly observed greater than 10 km from shore.

Roseate Tern (*) Buff-breasted Sandpiper (nb) 
Red-throated Loon (nb) Short-billed Dowitcher (nb) 
Least Tern (c) Pied-billed Grebe 
Gull-billed Tern Horned Grebe (nb) 
Great Shearwater (nb) Black Skimmer 
Audubon’s Shearwater (nb) Short-eared Owl (nb) 
American Bittern Whip-poor-will 
Least Bittern Red-headed Woodpecker 
Snowy Egret Loggerhead Shrike 
Bald Eagle (b) Brown-headed Nuthatch 
Peregrine Falcon (b) Sedge Wren 
Black Rail Wood Thrush 
Wilson’s Plover Blue-winged Warbler 
American Oystercatcher Golden-winged Warbler 
Solitary Sandpiper (nb) Prairie Warbler 
Lesser Yellowlegs (nb) Cerulean Warbler 
Upland Sandpiper Worm-eating Warbler 
Whimbrel (nb) Kentucky Warbler 
Hudsonian Godwit (nb) Henslow’s Sparrow 
Marbled Godwit (nb) Nelson’s Sharp-tailed Sparrow 
Red Knot (rufa ssp.) (a) (nb) Saltmarsh Sharp-tailed Sparrow 
Semipalmated Sandpiper (Eastern) (nb) Seaside Sparrow (c) 
Purple Sandpiper (nb) Rusty Blackbird (nb) 
(*) ESA listed, (a) ESA candidate, (b) ESA delisted, (c) non-listed subspecies or 
population of Threatened or Endangered species, (nb) non-breeding in this BCR 
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In addition to the ESA, which affects listed species, 
the Migratory Bird Treaty Act (MBTA) of 1918, 
as amended, protects all species of seabirds in 
the U.S. The MBTA makes it unlawful in most 
cases to take, kill, possess, transport or import 
migratory birds, their eggs or their nests. The 
USFWS and Department of Justice are allowed 
enforcement discretion. To date enforcement has 
focused on persons or operations that have taken 
birds with blatant disregard for the law. In general, 
offshore enforcement of both MBTA and ESA 
poses a significant and unresolved challenge. 
The provisions of the MBTA apply equally to 
federal and non-federal entities, except where 
exempted (e.g., selected military activities). Table 
6.1 summarizes the USFWS species of concern 
for the Bird Conservation Region (BCR) including 
the New York Bight. 

Additional federal efforts for seabird conservation include: Executive Order 13186 - Responsibilities of Federal 
Agencies To Protect Migratory Birds, which was implemented in 2001, the Fish and Wildlife Conservation Act 
of 1980, and guidelines of the Magnuson-Stevens Fishery Conservation and Management Act of 1976, as 
reauthorized. In the latter, Fisheries Management Councils must select measures that, to the extent practicable, 
minimize seabird bycatch and bycatch mortality. In doing so, Councils are advised to consider effects on both 
seabirds and other protected species (e.g., marine mammals, sea turtles). 

New York State’s Environmental Conservation Law (ECL) supplements federal laws to help conserve seabirds 
in State waters. For instance, New York makes its own list of endangered, threatened and species of special 
concern to supplement the federal list and has similar prohibitions (§ 11-0535). New York also has its own 
conservation measures like the Bird Conservation Area (BCA) program. The BCA program integrates bird 
conservation interests into agency planning, management and research projects and to date has set aside 
52 areas in the State to safeguard and enhance populations in important habitats. To date, bird conservation 
areas have been created for terrestrial and estuarine systems, but not for pelagic systems. 

The New York Department of State (NY DOS) is currently leading an effort to formalize the process of identifying 
significant offshore habitats for wildlife, which could lead to identification of important habitats for seabirds. The 
procedures used to identify, evaluate and recommend areas for protection are being taken from NY State’s 
procedures previously used in coastal waters (Ozard, 1984). The data and maps presented in this report are 
intended as a resource to support identification of significant habitats to coastal and pelagic seabirds. 

6.6. challeNgeS of uNDerStaNDiNg SeaBirD DiStriButioN aND aBuNDaNce 
Seabirds are highly mobile organisms that range widely and respond to shifting and dynamic features in their 
physical and biological environment at time scales from minutes to years. Developing contiguous distribution 
maps at the relatively fine spatial scales (0.5-5 km horizontal resolution or better) needed for offshore planning 
off NY is a formidable challenge, not least because any discernible long-term average spatial patterns must be 
inferred from incomplete observations on a process with a tremendous amount of inherent variation. 

Traditionally, offshore seabird distribution data has been represented by atlases using spatially aggregated 
observations at coarse spatial resolutions of 10-15 kilometers or greater (Jespersen, 1924; Moore, 1951; 
Powers, 1983). Often, non-quantitative data (sightings collected anecdotally outside of standardized surveys) 
are incorporated into these general descriptions of a species’ range. Such coarse descriptions are helpful 
for some regional monitoring, assessment and planning purposes, but are inappropriate for detailed spatial 
planning decisions. Increasingly, state and local managers are being asked to make resource management 
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Photo by: David Pereksta, BoeM 

Image 6.3. Double-crested Cormorant. 
Photo by: David Pereksta, BOEM 
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decisions at much finer resolutions. For instance, the U.S. Department of the Interior (DOI) Bureau of Ocean 
Energy Management (BOEM) divides the Outer Continental Shelf (OCS) into leasing blocks for energy leasing 
purposes that are approximately 5x5 kilometers (length x width), and it is anticipated that areas as small 
as 1/16th of a lease block could be leased. Maps in most seabird atlases are too coarse to differentiate 
seabird communities in 5x5 km lease blocks, let alone the smaller areas that are being considered. One of the 
objectives of this chapter is to develop maps at the spatial scales that managers are using to make decisions 
in the waters offshore of NY. 

Improving the spatial resolution of predictive maps of seabird distribution requires dealing with two issues 
that arise at fine spatial scales: data gaps, and the inevitable increase in uncertainty associated with making 
predictions at finer spatial  scales. To address the problem of discontinuous data (data gaps), we adopt a 
predictive spatial statistical modeling approach. This approach takes advantage of the increased availability 
of biophysical data at fine spatial resolutions and over broad spatial extents (see Chapters 2, 3, 4), along with 
statistical modeling techniques that analyze and generalize the spatial information contained in observations 
(see Appendix  6.A). We combine regression (generalized linear modeling [Fox, 2008]) and geostatistical (kriging 
[Cressie, 1993; Chiles and Delfiner, 1999]) approaches in a statistical modeling framework to predict the long-
term average probability of occurrence and relative abundance of a variety of seabird species and groups. In 
this approach, both seabird-environment linkages and spatial autocorrelation are used to make predictions 
about unobserved locations from the scattered available data. We note that our approach does not attempt 
to predict the location of individual birds at a particular time. Rather, we model the long-term average pattern 
(called the ‘spatial climatology’) of seabird occurrence  and abundance. The spatial climatological approach is a 
useful way to map persistent patterns in the distribution of dynamic organisms (e.g., Santora and Reiss, 2011), 
and is less data-intensive than individual-based approaches. 

A  second challenge of fine-resolution mapping of a dynamic, incompletely sampled spatial process like seabird 
abundance is characterizing and conveying uncertainty. Uncertainty in predictive maps of a dynamic living 
resource (e.g., seabird populations) comes from several sources, including sampling, measurement error, and 
the intrinsic dynamics of the resource itself (e.g., migration, mortality, reproduction) in conjunction with natural 
and anthropogenic changes in the environment. When environmental variables are used as predictors, they 
are often also measured with uncertainty, and/or may only serve as indirect proxies of the underlying driving 
mechanisms (e.g., water column stratification may correlate with prey availability). It is important to understand 
and communicate uncertainties to ensure there is an awareness of the limitations inherent in the use of static 
maps to represent dynamic resources. Our choice of the regression-geostatistical modeling framework allows 
us to produce maps quantifying how uncertainty varies over space. We also employ a battery of diagnostic 
statistics (e.g., error magnitude, prediction skill, receiver operating characteristic [ROC] curve analysis, and 
cross-validation statistics) to assess model accuracy, validity, and performance. Cross-validation diagnostic 
statistics are particularly important because 
they provide an integrated assessment of model 
performance given uncertainties and possible 
violations of model assumptions. 

6.7. SuMMarY of PreviouS  StuDieS  
relevaNt to the StuDY  regioN 
Much is known about birds in inland, estuarine and 
coastal habitats of New York, but less information 
is available for offshore habitats. Collecting data 
in offshore habitats is expensive and few datasets 
provide a comprehensive depiction of the seabird 
community over many years, seasons and 
places. The data used for this report come from 
the Manomet Bird Observatory (MBO) Seabird Photo by: David Pereksta, BOEM 

and Cetacean Assessment Program (CSAP) Image 6.4. Common Tern. 
database, which contains species-specific Photo by: David Pereksta, BOEM 
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sightings from multiple years (1980-1988). 
Spatially, temporally, and taxonomically, the 
MBO CSAP database is the most comprehensive 
single available information source on seabird 
distribution for the study area. 

Two more recent regional offshore seabird 
survey efforts are underway that will likely 
eventually surpass the MBO CSAP in spatial and 
temporal intensity of effort: seabird observations 
conducted on NOAA Fisheries Service (NMFS/ 
NEFSC) Ecosystem Monitoring and Herring 
Acoustic Survey cruises regularly from 2006 to 
present (contact: Dr. Richard Veit, Professor, 
City University of New York, College of Staten 
Island, richard.veit@csi.cuny.edu), and AMAPPS 
surveys conducted starting in 2010 (Contact: Mr. 

Michael Simpkins, Branch Chief, NOAA/NEFSC/READ/Protected Species Branch, michael.simpkins@noaa.
	
gov). It is recommended that New York State closely monitor the progress of these efforts and use these data 
to assess possible changes in seabird distribution and abundance since the period in the 1980’s when the 
MBO CSAP was collected. 

As part of an ongoing study funded by the U.S. DOI Bureau of Ocean Energy Management (BOEM),the USGS 
Patuxent Wildlife Research Center (PWRC) has been assembling a compendium of offshore avian survey data 
in the U.S. Atlantic (O’Connell et al., 2009; Spiegel and Johnston, 2011; see also http://www.boemre.gov/eppd/ 
PDF/EPPDStudies/CompendiumAvianInformation.pdf). The Atlantic Seabird Compendium (ASC) currently 
includes >250,000 seabird occurrence records from >80 datasets, including all of the datasets identified above. 
USGS plans to make most of this database publicly available in the near future through the US Fish & Wildlife 
Service (USFWS), although there may be some limitations on distribution due to the proprietary nature of some 
datasets. Metadata and summary data are already available (Spiegel and Johnston, 2011; USGS, 2012). 

Other resources for seabird data include online databases such as the Ocean Biogeographic Information 
System Spatial Ecological Analysis of Megavertebrate Populations (OBIS-SEAMAP; http://seamap.env.duke. 
edu/) and the Global Biodiversity Information Facility (GBIF; resource: http://www.gbif.org/). In the preparation 
of this report we have extensively searched all of these resources. Again, at the time of publication, despite its 
age, the MBO CSAP represents the most comprehensive, long-term single database available to characterize 
the marine avifauna of the NY region. 

Payne et al. (1984) used an early version of the MBO CSAP database to analyze the distribution and abundance 
of seabirds in 13 subregions from Nova Scotia to Cape Hatteras. Their report provided seasonal density 
estimates of seabirds at coarse spatial scales (e.g., Southern New England Inner shelf, Mid-Atlantic Outer 
Shelf), which may be useful for regional ocean planning. Hoopes et al. (1993) presented summary analyses 
based on the full 1980-1988 MBO CSAP dataset. More recently Huettmann and Diamond (2000, 2001), and 
Pittman and Huettmann (2006) used the MBO CSAP dataset and additional sighting information collected in 
Canadian waters (the Programme Intégré de Recherches sur les Oiseaux Pélagiques [PIROP] database) to 
assess seabird distribution patterns at medium resolution (5 arc-minutes or ~9 km). The reader is referred 
to Huettmann (2000) and Pittman and Huettmann (2006) for a detailed characterization of the distribution of 
survey effort and other background information on the PIROP and MBO CSAP databases. Huettmann and 
Diamond (2000, 2001) tracked migration patterns of nine species in the northwest Atlantic Ocean, including 
some parts of the New York study area. 

Pittman and Huettmann (2006) derived spatially-explicit and quantitative information on the distribution and 
diversity of seabirds within the Gulf of Maine, as part of an ecological assessment for the Stellwagen Bank 
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Photo by: David Pereksta, BoeM 

Image 6.5. Red Phalarope. Photo by: David Pereksta, BOEM 
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National Marine Sanctuary. They used a boosted 
regression tree (BRT) approach to develop 
statistical models and produce medium resolution 
(~9x9 km grid) predictive maps of seabird relative 
prevalence. In the present chapter, we use a 
generalized linear model (GLM)-based regression 
approach instead of the BRT approach, use 
a wider set of environmental covariates, use 
relative abundance information as well as relative 
prevalence, and employ a different statistical 
framework (regression-kriging) that allows us to 
produce finer spatial resolution predictions by 
accounting for spatial autocorrelation. 

It should be noted that a smaller project by the New 
York State Energy Research and Development 
Authority (NYSERDA) used the MBO dataset to 
assess potential avian impacts of a proposed Long Island – New York City offshore wind project (NYSERDA, 
2010). Their report provides a list of species and a review of their biology and potential impacts, but does not 
map or assess distribution. 

We also note that a variety of datasets other than the MBO CSAP exist for coastal areas near the study 
area, including: surveys of Long Island’s beach-nesting shorebird habitats (NY and TNC, 1991), New York’s 
Christmas Bird Count, the North American Breeding Bird Survey, The Audubon Society’s eBird counts, and 
compilations of surveys by the US Fish and Wildlife Service. The Nature Conservancy used New York State 
and US Fish and Wildlife surveys to identify critical habitats for Roseate Terns, Least Terns, Piping Plovers 
and Harlequin Ducks along Long Island’s shores. These studies may be useful for nearshore spatial planning, 
although it is important to realize they do not provide information on the presence or absence of birds outside 
of nearshore areas. 

Rhode Island and New Jersey, two states adjacent to New York, have conducted systematic studies of their 
offshore waters to establish ecological baselines for use in coastal and marine spatial planning (Paton et 
al., 2010; GMI, 2010). These studies are recent, reliable and extend over offshore habitats adjacent to their 
corresponding States, some of which partially overlap but do not cover the New York study area. 

Finally, we are aware of three additional datasets that overlap very small portions of the study area. The 
Massachusetts Audobon Society conducted surveys from 2002 to 2006 to assess the potential effect of wind 
farm development on avifauna in Nantucket sound. Surveys were conducted from fixed-wing aircraft at 500 
feet above the water surface and by boat. These data are proprietary but are contained in the USGS ASC 
database mentioned above (O’Connell et al., 2009). The Minerals Management Service (now the Bureau 
of Ocean Energy Management) funded a winter survey of coastal mid-Atlantic seabirds that extended from 
southern Virginia to the northern border of New Jersey. This survey covered from the coast offshore to at least 
12 nautical miles, and was conducted in 2001-2002 and 2002-2003. These data are public and included in 
the USGS ASC database (O’Connell et al., 2009). As part of studies related to the Cape Wind project, Energy 
Management, Inc. commissioned boat and aerial surveys of Nantucket Sound from 2002 to 2004. These data 
are proprietary and have not been publicly released, but metadata are available in the USGS ASC database 
(O’Connell et al., 2009). 

Photo by: David Pereksta, BOEM 

Image 6.6. South Polar Skua. 
Photo by: David Pereksta, BOEM 
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6.8. MethoDS 
This section provides
an overview of how the 
MBO CSAP seabird
database (Figure 6.1) was 
used, in conjunction with 
environmental covariates, to 
fit spatial statistical models 
and produce predictive maps 
of seabird distribution and 
relative abundance in the 
NY region representative of 
the period from 1980-1988. 
Figures 6.2 and 6.3 provide 
an outline and example of 
the key processing steps. 
Tables 6.2, 6.4 and 6.5 
and Figures 6.1 and 6.4 
summarize the input data. 
The statistical methods
used are covered in greater 
detail in Appendix 6.A and 
Online Supplement 6.2. The 
sources and processing of 
the environmental covariate 
data are covered in greater 
detail in Chapter 4, Appendix 
6.B and Online Supplement 
6.1. 
 
6.8.1. Study region and grid

 

 

 

 
The same study region and 30 arc-second geographic grid described in Chapter 4 of this report was used for 
all seabird environmental variables and model predictions. The 30 arc-second grid has a north-south linear 
dimension of 0.927 km and an average east-west linear dimension of 0.714 km in the study region (average 
= 0.814 km). This resolution is approximately 400 times finer than previous 10 arc-minute maps and 100 
times finer than 5 arc-minute maps. For simplicity, we have chosen to use decimal degrees to keep track of 
grid cell centroids, and measure distances using a simple elliptical geodetic approximation; the effects of this 
simplifying assumption are negligible given the size of our study region and grid configuration (potential errors 
in linear distances <50% of grid cell horizontal resolution). 

6.8.2. Seabird survey data 
Seabird sightings data for the study region were extracted from the Manomet Bird Observatory’s (MBO) 
Cetacean and Seabird Assessment Program (CSAP) database. The former MBO is currently named the 
Manomet Center for Conservation Sciences (MCCS). This is one of the largest pelagic seabird data sets in 
the world, providing exceptional spatial and temporal resolution for the Northwest Atlantic for the period from 
1980-1988. As discussed above (Section 6.7.), this is the best currently available single source for seabird 
abundance and distribution data in the study region; other, smaller and/or more narrowly focused datasets 
exist, and future efforts to synthesize those data could result in improved coverage and accuracy in specific 
areas and/or for certain species. The MBO database was provided directly by staff at the MCCS to the NOAA 
Biogeography Branch in 2006 (Pittman and Huettmann, 2006). We extracted only quantitative survey data 
(i.e., data from fixed time, standardized surveys as described below) from the CSAP database. The following 
filtering criteria were used: OBTYPE=1 (quantitative surveys only), ANTYPE=1 (seabirds) or 0 (confirmed 
absence of any seabird species), and transect centroid falling on or within the study area shown in Chapter 1, 
Figure 1.2. Field names refer to fields in the digital database outputs supplied to us by MCCS. 
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a) b) 

Spring Summer 

c) d) 

Fall Winter 

Figure 6.1. Locations (centroids) of all unique MBO CSAP seabird survey transects sampled 
between April 1980 and October 1988 in a)Spring, b)Summer, c)Fall, and d)Winter.
	



 

 

 

 
 

  

 
 

 
 

 
 

 

   

 
 

      

  

    

   

  

Pre-
screening 

Pre-
screening 

(A) Data 

C) Stage I Trend Map 

7. 
(G) * (H) 

Stage I 
Presence/Absence 
Transformed Data 

Stage II 
Box-Cox Transformed 
Non-zero Data 

(B) Potential 
Predictors 

2. 
Select and fit 
trend model 

(normal GLM, 
identity link) 

1. 
Select and fit 
trend model 

(binomial GLM, 
logit link) 

3. 
Fit residual 

spatial model 
(ordinary 

indicator Kriging) 

D) Stage II Trend Map 

4. 
Fit residual 

spatial model 
(simple Kriging) 

E) Stage I Residual Map F) Stage II Residual Map 

5. 
(C) + (E) 

- 2 * (C) * (E) 

6. 
(D) + (F) 

(G) Final Stage I Model (H) Final Stage II Model 

(I) Final Stage I x II Model 

(J) Model diagnostics and accuracy assessment 

8.  
Model validation/evaluation 

Figure 6.2. Flowchart of seasonal predictive mapping process for seabirds. Letters represent geospatial inputs/
outputs. Numbers represent process steps. For details, see Figure 6.3, Section 6.8.6. and Appendix 6.A. 
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Predictor: BATH (Bathymetry)

TRANSFORMED X*=((-X)+1)^(-0.4)

Legend
bath
Value

High : 0

Low : -4078.8

Legend
bathtx
Value

High : 1

Low : 0.0396347

Predictor: SLOPE (Bathymetric slope, %)
(spatial smoothing filters applied; see methods)

TRANSFORMED X*=X^(-0.4)

Legend
slope
Value

High : 31.7198

Low : 0

Legend
slopetx
Value

High : 6.50221

Low : 0.250881

Predictor: SLPSLP (Slope of the bathymetric slope, % of %)
(spatial smoothing filters applied; see methods)

TRANSFORMED X*=X^(-0.3)

Legend

Legend
slopetx
Value

High : 6.50221

Low : 0.250881

Predictor: DIST (Distance from shore)

TRANSFORMED X*=X^(0.6)

Legend
dist
Value

High : 389897

Low : 0

Legend
disttx
Value

High : 2262.4

Low : 7.16397

Predictor: SSDIST (Signed distance from shelf-break)
(+ = inshore of shelf break; - = offshore)

TRANSFORMED X*=X (no transformation)

Legend
ssdist
Value

High : 255660

Low : -253099

Legend
ssdist
Value

High : 255660

Low : -253099

Predictor: PHIM (Mean phi of surficial sediments)
(phi = log2[grain size in mm])

TRANSFORMED X*=1/(X+3)

Legend
phim
Value

High : 8

Low : -1

Legend
phimtx
Value

High : 0.699415

Low : 0.111521

ORIGINAL

Predictor: STRT (Water-column Stratification) 

TRANSFORMED X*=X (no transformation)

Spring
strtsp
Value

High : -0.152126

Low : -2.63181

Summer
strtsu
Value

High : -0.207336

Low : -4.27355

Fall
strtfa
Value

High : 0.00011096

Low : -1.24483

Winter
strtwi
Value

High : -0.00627884

Low : -1.10842

Spring
strtsptx
Value

High : -0.160332

Low : -2.63181

Summer
strtsutx
Value

High : -0.253546

Low : -4.27355

Fall
strtfatx
Value

High : 0.00011096

Low : -1.24483

Winter
strtwitx
Value

High : -0.00627884

Low : -1.10842

ORIGINAL

Predictor: SST (Sea Surface Temperature)

TRANSFORMED X*=11605/(X+273.15) 
[Arrhenius Transform]

Spring
sstsp
Value

High : 20.017242

 

Low : 6.136414

Summer
sstsu
Value

High : 25.781199

 

Low : 15.927500

Fall
sstfa
Value

High : 24.8416

Low : 14.293

Winter
sstwi
Value

High : 20.7596

Low : 2.10314

Spring
sstsptx
Value

High : 41.5469

Low : 39.5849

Summer
sstsutx
Value

High : 40.1449

Low : 38.8216

Fall
sstfatx
Value

High : 40.3704

Low : 38.944

Winter
sstwitx
Value

High : 42.1612

Low : 39.4849

ORIGINAL

Predictor: TUR (Turbidity proxy) 
(water-leaving radiance at 670nm)

TRANSFORMED X*=1/X

Spring
tursp
Value

High : 0.150661

Low : 0.000986279

Summer
tursu
Value

High : 0.0776247

Low : 0.000986279

Fall
turfa
Value

High : 0.0820352

Low : 0.000986279

Winter
turwi
Value

High : 0.0968278

Low : 0.000986279

Spring
tursptx
Value

High : 1013.91

Low : 6.63743

Summer
tursutx
Value

High : 1013.91

Low : 12.8825

Fall
turfatx
Value

High : 1013.91

Low : 12.1899

Winter
turwitx
Value

High : 1013.91

Low : 10.3276

ORIGINAL

Predictor: CHL (Surface chloropyll-a concentration) 

TRANSFORMED X*=1/(X+1)

Spring
chlsp
Value

High : 28.4126

Low : 0.342835

Summer
chlsu
Value

High : 44.2268

Low : 0.131187

Fall
chlfa
Value

High : 31.7367

Low : 0.189801

Winter
chlwi
Value

High : 20.7363

Low : 0.223119

Spring
chlsptx
Value

High : 0.744693

Low : 0.033999

Summer
chlsutx
Value

High : 0.884027

Low : 0.0221108

Fall
chlfatx
Value

High : 0.840476

Low : 0.0305467

Winter
chlwitx
Value

High : 0.817582

Low : 0.046006

ORIGINAL

Predictor: ZOO (Zooplankton biomass) 
(mean displacement volume)

TRANSFORMED X*=X (no transformation)

Spring
zoosp
Value

High : 0.486188

Low : 0.128213

Summer
zoosu
Value

High : 0.7406

Low : 0.0718191

Fall
zoofa
Value

High : 0.827508

Low : 0.0238171

Winter
zoowi
Value

High : 0.361812

Low : 0.0289613

Spring
zoosptx
Value

High : 0.486188

Low : 0.128213

Summer
zoosutx
Value

High : 0.7406

Low : 0.0718191

Fall
zoofatx
Value

High : 0.827508

Low : 0.0238171

Winter
zoowitx
Value

High : 0.361812

Low : 0.028961

Figure 6.3. Example geospatial 
information from each step of 
the seasonal predictive modeling 
process (example images are 
from the Dovekie winter model). 
Panel letters correspond to the 
letters in the model flowchart 
(Figure 6.2). 

Notes: 
i) Maps in this figure are intended 
only as examples of the modeling 
process and should not be used 
in place of the final Dovekie maps 
presented in Figure 6.12 and in 
Appendix 6.C. 

ii) For a full depiction of the 
predictor variables shown in 
panel B, see Figure 6.4 and 
Appendix 6.B. 

iii) Panels D, E, F, and H show 
prediction maps before error-
masking to eliminate unreliable 
predictions far from data points.

iv) Panels D, F, and H show 
model predictions in Box-Cox 
transformed units that are not 
linearly related to the original 
SPUE units. 

v) Stage II panels (D, F, and H) 
refer to conditional SPUE (SPUE 
when the species is present). 

vi) Final Stage I x II model results 
(Panel I) are presented in back-
transformed units (the original 
SPUE units of No. indiv./km2/15-
min), and represent the expected 
value of unconditional SPUE 
(the expected average over 
many repeated measurements 
at the same location if zeros are 
included in the average), which is 
the final output of the model. 

vii) See Appendix 6.A for details 
of statistical methods.

viii) Pink dashed lines depict 
outline of NY planning area. 
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Table  6.2.  Species recorded by MBO CSAP quantitative surveys (1980-1988) in the study region, and groupings used for analysis*. 
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coMMoN NaMe faMilY ScieNtific NaMe 
Species individually Mapped 

Black-legged Kittiwake Laridae Rissa tridactyla 
Common Tern Sternidae Sterna hirundo 
Common Loon Gaviidae Gavia immer 
Cory’s Shearwater Procellariidae Calonectris diomedea 
Dovekie Alcidae Alle alle 
Great Black-backed Gull Laridae Larus marinus 
Great Shearwater Procellariidae Puffinus gravis 
Herring Gull Laridae Larus argentatus smithsonianus 
Laughing Gull Laridae Larus atricilla 
Northern Fulmar Procellariidae Fulmarus glacialis 
Northern Gannet Sulidae Morus bassanus 
Pomarine Jaeger Stercorariidae Stercorarius pomarinus 
Sooty Shearwater Procellariidae Puffinus griseus 
Wilson’s Storm-Petrel Hydrobatidae Oceanites oceanicus 

Alcids, Less Common Alcidae 
Atlantic Puffin Alcidae Fratercula arctica 
Common Murre Alcidae Uria aalge 
Thick-billed Murre Alcidae Uria lomvia 
Razorbill Alcidae Alca torda 
Unidentified sightings in the family Alcidae Alcidae n/a 

Coastal Waterfowl 
(Eiders, Mergansers, Scoters, Ducks, Loons) Anatidae, Gaviidae
 White-winged Scoter Anatidae Melanitta fusca
 Black Scoter Anatidae Melanitta nigra
 Surf Scoter Anatidae Melanitta perspicillata
 Long-tailed Duck Anatidae Clangula hyemalis
 Red-throated Loon Gaviidae Gavia stellata
 Red-breasted Merganser Anatidae Mergus serrator
 Common Eider Anatidae Somateria mollissima

  Unidentified species in families Anatidae and Gaviidae Anatidae, Gaviidae n/a 

Jaegers Stercorariidae 
Parasitic Jaeger Stercorariidae Stercorarius parasiticus 
Long-tailed Jaeger Stercorariidae Stercorarius longicaudus 
Unidentified sightings of Jaegers Stercorariidae n/a 

Phalaropes Scolopacidae
 Red Phalalarope Scolopacidae Phalaropus fulicaria
 Red-necked Phalarope Scolopacidae Phalaropus lobatus
 Unidentified sightings of Phalaropes Scolopacidae n/a 

Shearwaters, Less Common Procellariidae 
Manx Shearwater Procellariidae Puffinus puffinus 
Audubon’s Shearwater Procellariidae Puffinus lherminieri 
Unidentified sightings in the family Procellariidae Procellariidae n/a 
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Table  6.2  cont.  Species recorded by MBO CSAP quantitative surveys (1980-1988) in the study region, and groupings used for analysis*. 
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coMMoN NaMe faMilY ScieNtific NaMe 
Small Gulls, Less Common Laridae 

Ring-billed Gull Laridae Larus delawarensis 
Bonaparte’s Gull Laridae Larus philadelphia 

Storm-Petrels, Less Common Hydrobatidae 
Leach’s Storm-Petrel Hydrobatidae Oceanodroma leucorhoa 
Band-rumped Storm-Petrel Hydrobatidae Oceanodroma castro

 White-faced Storm-Petrel Hydrobatidae Pelagodroma marina
 Unidentified species in the family Hydrobatidae Hydrobatidae n/a 

Terns, Less Common Sternidae
  Royal Tern Sternidae Sterna maxima
  Arctic Tern Sternidae Sterna paradisaea
  Roseate Tern Sternidae Sterna dougallii
  Least Tern Sternidae Sterna antillarum
  Sooty Tern Sternidae Onychoprion fuscatus
  Bridled Tern Sternidae Sterna anaethetus
  Forster’s Tern Sternidae Sterna forsteri
 Unidentified sightings in the family Sternidae Sternidae n/a 

Unidentified Gulls Laridae 
Unidentified sightings in the family Laridae Laridae n/a 

**Cormorants Phalacrocoracidae
 Double-crested Cormorant Phalacrocoracidae Phalacrocorax auritus
 Great Cormorant Phalacrocoracidae Phalacrocorax carbo
 Unidentified sightings of Cormorants Phalacrocoracidae n/a 

**Rare Visitors Anatidae, Laridae, Stercorariidae
 Canada Goose Anatidae Branta canadensis 

  American Black Duck Anatidae Anas rubripes
 Brant Anatidae Branta bernicla
 Bufflehead Anatidae Bucephala albeola
 Mallard Anatidae Anas platyrhynchos
 Glaucous Gull Laridae Larus hyperboreus
 Lesser Black-backed Gull Laridae Larus fuscus
 Iceland Gull Laridae Larus glaucoides glaucoides
 Little Gull Laridae Larus minutus
 South Polar Skua Stercorariidae Stercorarius maccormicki
 Unidentified sightings of Ducks and Geese Anatidae n/a 

**Skuas, Less Common Stercorariidae 
Great Skua Stercorariidae Stercorarius skua 
Unidentified sightings of Skuas Stercorariidae n/a 

* Species with one or more sightings in standardized quantitative surveys by the Manomet Bird Observatory Cetacean and Seabird Assessment 
Program (MBO CSAP) during the period April 1980 to October 1988. 

** No predictive modeling was carried out for these groups due to limited sample size. 



Survey methods have been previously described
(Powers et al., 1980; Powers, 1983; Payne et al., 
1984; Huettmann, 2000). Briefly, a small number 
of expert observers were trained in standardized
survey methods and placed on research vessels
undertaking a wide variety of surveys, including
NOAA  Fisheries Service groundfish, scallop, and 
plankton surveys, US Coast Guard surveys, and 
US EPA  surveys. Observers conducted surveys in 

Table 6.4. Summary of numbers of identifiable species, unidentified types, and contributions to species richness of each mapped 
species and group. 

 Start SeaSoN aBBreviatioN* Date eND Date 

Spring SP March 1 May 31 
Summer SU June 1 August 31 
Fall FA September 1 November 30 
Winter WI December 1 February 28** 
*Abbreviations used in some labels and figures. 
**February 29 in leap years. 
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 Table 6.3. Definition of seasons 
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 SPecieS or grouP NaMe 

 # of PoSitivelY 
iDeNtifieD 
SPecieS iN 

grouP 

 # of 
uNiDeNtifieD 

categorieS iN 
grouP 

MiNiMuM 
coNtriButioN 

to SPecieS 
richNeSS 

MaXiMuM 
coNtriButioN 

to SPecieS 
richNeSS 

Individually mapped species 
Black-legged Kittiwake 1 0 1 1 
Common Loon 1 0 1 1 
Common Tern 1 0 1 1 
Cory's Shearwater 1 0 1 1 
Dovekie 1 0 1 1 
Great Black-backed Gull 1 0 1 1 
Great Shearwater 1 0 1 1 
Herring Gull 1 0 1 1 
Laughing Gull 1 0 1 1 
Northern Fulmar 1 0 1 1 
Northern Gannet 1 0 1 1 
Pomarine Jaeger 1 0 1 1 
Sooty Shearwater 1 0 1 1 
Wilson's Storm-Petrel 1 0 1 1 
Subtotals 14 0 14 14 

Modeled species groups 
Alcids, less common 4 4 1 4 
Coastal Waterfowl 7 3 1 7 
Jaegers 2 1 1 2 
Phalaropes 2 1 1 2 
Shearwaters, less common 2 2 1 2 
Small Gulls, less common 2 0 1 2 
Storm-Petrels, less common 3 1 1 3 
Terns, less common 7 2 1 7 
Unidentified gulls 0 2 0 0 
Subtotals 29 16 8 29 

Non-modeled species groups 
Cormorants 2 1 1 2 
Rare Visitors 10 2 1 10 
Skuas, less common 1 1 1 1 
Subtotals 13 4 3 13 

 GRAND ToTALS 
Modeled 43 16 22 43 
Not modeled 13 4 3 13 
All 56 20 25 56 



 

 
 

 

Table 6.5. Numbers of unique shipboard survey locations in which each species or species group was seen, overall and by season. 

SPecieS or grouP NaMe total N N SPriNg N SuMMer N fall N wiNter 

Individually mapped species 
Black-legged Kittiwake 1,391 260 2 469 660 
Common Loon 217 112 4 60 41 
Common Tern 171 57 80 33 1 
Cory's Shearwater 458 3 301 153 1 
Dovekie 161 37 0 27 97 
Great Black-backed Gull 2,172 788 176 587 621 
Great Shearwater 951 33 502 407 9 
Herring Gull 4,252 1,671 282 1,565 734 
Laughing Gull 404 47 115 236 6 
Northern Fulmar 392 228 43 45 76 
Northern Gannet 2,302 1,142 9 537 614 
Pomarine Jaeger 130 14 7 108 1 
Sooty Shearwater 205 88 114 3 0 
Wilson's Storm-Petrel 

Species groups 
Alcids, less common 

1,680 

147 

300 

80 

1172 

0 

207 

5 

1 

62 
Coastal Waterfowl 300 120 0 67 113 
Jaegers 79 13 8 58 0 
Phalaropes 294 247 7 36 4 
Shearwaters, less common 196 16 93 87 0 
Small Gulls, less common 210 53 3 110 44 
Storm-Petrels, less common 225 46 126 53 0 
Terns, less common 127 57 49 21 0 
Unidentified gulls 291 55 19 163 54 
Cormorants 66 13 9 21 23 
Rare Visitors 42 18 1 11 12 
Skuas, less common 36 12 2 11 11 

Special category 
No birds sighted 2,299 511 847 812 129 

Number of unique locations 9,148 2,549 2,674 2,777 1,148 
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15-minute periods, where each period was considered an individual transect. In a small number of instances 
(313 data points, less than 1.5% of the data records) the actual survey time was slightly less than 15-minutes 
(7 to 14-minutes); this deviation from the standard protocol was considered minor and no explicit correction 
was made (it is partially accounted for simply by the corresponding decrease in transect area -- for a given 
ship speed, a shorter time transect will be shorter in length and area). Seabirds were identified to the lowest 
possible taxonomic level, usually species, and counted within a fixed strip width of 300 m at one side of the ship, 
traveling on a straight course, at a constant speed (generally 8-12 knots). The starting point, constant bearing, 
and constant speed during each fixed 15-minute survey period were recorded using the ship’s instruments, 
and used to define the area of the rectangular strip covered by the survey. For purposes of this analysis, unless 
otherwise noted, the centroid of each rectangular strip was used to define its spatial location. 

In the NY study region, transect length averaged 4.3 km (SD=0.8 km), ranging from 0.4 to 6.5 km, and transect 
area averaged 4.4 km2 (SD=2.9 km2), ranging from 0.1 to 20 km2. Average nearest-neighbor distance between 
transect centroids ranged from 2.8 km to 3.6 km depending on season, and the minimum nearest-neighbor 
distances ranging from 0.03 km to 0.26 km, depending on season (Figure 6.1). Given this spatial distribution 
of observations, the minimum length scale of features that can be resolved in all seasons is approximately 0.5 
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SPecieS or grouP 
SeaSoN NuMBer of 

 SeaSoNS 
MoDeleD SPriNg SuMMer fall wiNter 

Individually mapped species 
Black-legged Kittiwake Modeled Not modeled Modeled Modeled 3 
Common Loon Modeled Not modeled Modeled Modeled 3 
Common Tern Modeled Modeled Modeled Not modeled 3 
Cory's Shearwater Not modeled Modeled Modeled Not modeled 2 
Dovekie Combined* Absent† Combined* Modeled 1 
Great Black-backed Gull Modeled Modeled Modeled Modeled 4 
Great Shearwater Not modeled Modeled Modeled Not modeled 2 
Herring Gull Modeled  Modeled Modeled Modeled 4 
Laughing Gull Modeled Modeled Modeled Not modeled 3 
Northern Fulmar Modeled Modeled Modeled Modeled 4 
Northern Gannet Modeled Not modeled Modeled Modeled 3 
Pomarine Jaeger Not modeled Not modeled Modeled Not modeled 1 
Sooty Shearwater Modeled Modeled Not modeled Absent† 2 
Wilson's Storm-Petrel Modeled Modeled Modeled Not modeled 3 

Subotal 38 

Species groups 
Alcids, less common Modeled Absent† Not modeled Modeled 2 
Coastal Waterfowl Modeled Absent† Modeled Modeled 3 
Jaegers Not modeled Not modeled Modeled Absent† 1 
Phalaropes Modeled Not modeled Not modeled Not modeled 1 
Shearwaters, less common Not modeled Modeled Modeled Absent† 2 
Small Gulls, less common Modeled Not modeled Modeled Modeled 3 
Storm-Petrels, less common Modeled Modeled Modeled Absent† 3 
Terns, less common Modeled Modeled Not modeled Absent† 2 
Unidentified gulls Modeled Not modeled Modeled Modeled 3 
Cormorants Not modeled Not modeled Not modeled Not modeled 0 
Rare Visitors Not modeled Not modeled Not modeled Not modeled 0 
Skuas, less common Not modeled Not modeled Not modeled Not modeled 0 

Subtotal 20 

Special category 
No birds sighted** Modeled Modeled Modeled Modeled 4 

Subtotal 4 
Total number of seasonal predictive models 62 

* Sightings from these seasons were combined with sightings from Winter for modeling. 
† Species or group not detected in the Manomet dataset in this season. 
**Surveys that specifically noted the absence of any seabirds were modeled separately. 
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km (this is determined by the greater of: the minimum  transect length, or twice the minimum nearest-neighbor 
distance). Thus the grid resolution chosen for the present study (~0.8 km) approaches the finest possible 
resolution given the limits of the data. This is one reason that cross-validation, described below, is essential 
to characterize the accuracy of final mapped predictions. Cross-validation accuracy assessments take into 
account horizontal positional error as well as other sources of uncertainty. 

The CSAP database contained 16,899 species sighting and abundance records (plus 2,299 records of surveys 
in which no seabirds were sighted, i.e., confirmed absences) from quantitative transect surveys at 9,099 unique 
locations in our study area, spanning the time period from April 20, 1980 to October 3, 1988 (a total of 9,148 
unique survey locations in all seasons; Figure 6.1, Tables 6.2, 6.4, 6.5). The age of this dataset is an admitted 



ORIGINAL note: all X<=0 ORIGINAL ORIGINAL

ORIGINAL ORIGINAL ORIGINAL

( )Bottom depth (Bath) Bottom slope (SloPe) Slope-of-slope (SlPSlP) 

Distance from shore (DiSt) Signed dist. from shelf (SSDiSt) Mean sediment grain size (PhiM) 

Water-column stratification (Strt) Sea surface temperature (SSt) Surface turbidity measure (tur) 

Surface chlorophyll-a conc. (chl) Zooplankton biomass (Zoo) 
Figure 6.4. Potential environmental 
predictor variables considered for each 
predictive model. For dynamic variables 
(STRT, SST, TUR, CHL, ZOO) only the 
Winter map is shown. See Appendix 6.B 
for more details on predictor variables, 
including all four seasonal maps for
each of the dynamic variables and maps 
of the variables after transformation for 
statistical analysis. Full legends are given 
in Appendix 6.B. 

Predictor: BATH (Bathymetry)

TRANSFORMED X*=((-X)+1)^(-0.4)

Legend
bath
Value

High : 0

Low : -4078.8

Legend
bathtx
Value

High : 1

Low : 0.0396347

Predictor: SLOPE (Bathymetric slope, %)
(spatial smoothing filters applied; see methods)

TRANSFORMED X*=X^(-0.4)

Legend
slope
Value

High : 31.7198

Low : 0

Legend
slopetx
Value

High : 6.50221

Low : 0.250881

Predictor: SLPSLP (Slope of the bathymetric slope, % of %)
(spatial smoothing filters applied; see methods)

TRANSFORMED X*=X^(-0.3)

Legend

Legend
slopetx
Value

High : 6.50221

Low : 0.250881

Predictor: DIST (Distance from shore)

TRANSFORMED X*=X^(0.6)

Legend
dist
Value

High : 389897

Low : 0

Legend
disttx
Value

High : 2262.4

Low : 7.16397

Predictor: SSDIST (Signed distance from shelf-break)
(+ = inshore of shelf break; - = offshore)

TRANSFORMED X*=X (no transformation)

Legend
ssdist
Value

High : 255660

Low : -253099

Legend
ssdist
Value

High : 255660

Low : -253099

Predictor: PHIM (Mean phi of surficial sediments)
(phi = log2[grain size in mm])

TRANSFORMED X*=1/(X+3)

Legend
phim
Value

High : 8

Low : -1

Legend
phimtx
Value

High : 0.699415

Low : 0.111521

ORIGINAL

Predictor: STRT (Water-column Stratification) 

TRANSFORMED X*=X (no transformation)

Spring
strtsp
Value

High : -0.152126

Low : -2.63181

Summer
strtsu
Value

High : -0.207336

Low : -4.27355

Fall
strtfa
Value

High : 0.00011096

Low : -1.24483

Winter
strtwi
Value

High : -0.00627884

Low : -1.10842

Spring
strtsptx
Value

High : -0.160332

Low : -2.63181

Summer
strtsutx
Value

High : -0.253546

Low : -4.27355

Fall
strtfatx
Value

High : 0.00011096

Low : -1.24483

Winter
strtwitx
Value

High : -0.00627884

Low : -1.10842

ORIGINAL

Predictor: SST (Sea Surface Temperature)

TRANSFORMED X*=11605/(X+273.15) 
[Arrhenius Transform]

Spring
sstsp
Value

High : 20.017242

 

Low : 6.136414

Summer
sstsu
Value

High : 25.781199

 

Low : 15.927500

Fall
sstfa
Value

High : 24.8416

Low : 14.293

Winter
sstwi
Value

High : 20.7596

Low : 2.10314

Spring
sstsptx
Value

High : 41.5469

Low : 39.5849

Summer
sstsutx
Value

High : 40.1449

Low : 38.8216

Fall
sstfatx
Value

High : 40.3704

Low : 38.944

Winter
sstwitx
Value

High : 42.1612

Low : 39.4849

ORIGINAL

Predictor: TUR (Turbidity proxy) 
(water-leaving radiance at 670nm)

TRANSFORMED X*=1/X

Spring
tursp
Value

High : 0.150661

Low : 0.000986279

Summer
tursu
Value

High : 0.0776247

Low : 0.000986279

Fall
turfa
Value

High : 0.0820352

Low : 0.000986279

Winter
turwi
Value

High : 0.0968278

Low : 0.000986279

Spring
tursptx
Value

High : 1013.91

Low : 6.63743

Summer
tursutx
Value

High : 1013.91

Low : 12.8825

Fall
turfatx
Value

High : 1013.91

Low : 12.1899

Winter
turwitx
Value

High : 1013.91

Low : 10.3276

ORIGINAL

Predictor: CHL (Surface chloropyll-a concentration) 

TRANSFORMED X*=1/(X+1)

Spring
chlsp
Value

High : 28.4126

Low : 0.342835

Summer
chlsu
Value

High : 44.2268

Low : 0.131187

Fall
chlfa
Value

High : 31.7367

Low : 0.189801

Winter
chlwi
Value

High : 20.7363

Low : 0.223119

Spring
chlsptx
Value

High : 0.744693

Low : 0.033999

Summer
chlsutx
Value

High : 0.884027

Low : 0.0221108

Fall
chlfatx
Value

High : 0.840476

Low : 0.0305467

Winter
chlwitx
Value

High : 0.817582

Low : 0.046006

ORIGINAL

Predictor: ZOO (Zooplankton biomass) 
(mean displacement volume)

TRANSFORMED X*=X (no transformation)

Spring
zoosp
Value

High : 0.486188

Low : 0.128213

Summer
zoosu
Value

High : 0.7406

Low : 0.0718191

Fall
zoofa
Value

High : 0.827508

Low : 0.0238171

Winter
zoowi
Value

High : 0.361812

Low : 0.0289613

Spring
zoosptx
Value

High : 0.486188

Low : 0.128213

Summer
zoosutx
Value

High : 0.7406

Low : 0.0718191

Fall
zoofatx
Value

High : 0.827508

Low : 0.0238171

Winter
zoowitx
Value

High : 0.361812

Low : 0.028961
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limitation of this analysis, and implications of using data that are 24-32 years old at the time of the present 
report’s publication (2012) are discussed in Appendix 6.A (Section 6.A.14.) and in the Discussion (Section 
6.10.). Fifty-six identifiable species of seabirds and waterfowl were recorded (Table 6.2, Table 6.4). These 
species were organized into groups for modeling purposes where necessary due to small sample sizes (see 
below and Table 6.2, Table 6.4, Table 6.5, Table 6.6). All “unidentified” bird sighting categories were identified 
at least to family level, which allowed assignment of those sighting records to appropriate groups. Most of the 
“unidentified” categories are likely to represent species positively identified elsewhere in the database that 
could not be positively identified in a particular sighting record, rather than species not otherwise represented 
in the database (although it is possible that a few of the “unidentified” records truly represent species not 
recorded elsewhere). Fifty-six is thus a conservative estimate of the number of seabird and opportunistically 
seafaring species present in the 1980-1988 period in the NY Bight study region. Since the MBO CSAP surveys 
were ship-based and most survey effort was focused >10 km offshore (Pittmann and Huettmann, 2006), the 
total number of species that may be observed over nearshore waters could be substantially higher. 

Temporal patterns of seabird occurrence were summarized with monthly histograms (Appendix 6.C), and 
used to further divide bird occurrence into seasons for modeling as described in Section 6.8.3. Although the 
Manomet dataset provides good coverage for offshore environments, survey effort is reduced within 10 km of 
shore (Pittmann and Huettmann, 2006), and excludes most of Long Island Sound. To alleviate the effects of this 
bias on temporal occurrence histograms for nearshore species (species spending substantial amounts of time 
<10 km from shore), we obtained non-quantitative data from an online dataset (eBird, http://ebird.org/content/ 
ebird). The eBird dataset consists of opportunistic publicly available bird observations made by recreational 
and professional bird watchers and was developed by the Cornell Lab of Ornithology and National Audubon 
Society. Seabird sighting frequencies were extracted from the open access eBird database in November, 
2011 for the New England/Mid Atlantic Bird Conservation Region, and used to produce monthly histograms 
of sighting frequency that are presented alongside the CSAP histograms for comparison (see Appendix 6.C). 

6.8.3. Processing of quantitative seabird data for analysis 
Observations were separated by season; season definitions are given in Table 6.3. For each season, unique 
survey locations were identified (2,549 locations in spring, 2,674 locations in summer, 2,777 locations in fall, 
1,148 locations in winter), defining the sampling configuration for each season (Figure 6.1). For each species 
or group sighting record in each season, the “COUNT” field of the CSAP database (number of birds of that 
species observed during the timed survey) was divided by the corresponding survey tract area to yield an index 
of relative abundance that was standardized by both time (15-minutes) and area (km2 of transect footprint), 
which we will hereafter refer to as sightings per unit effort (SPUE). Units of SPUE are individual birds detected 
per square kilometer per 15-minute survey. When species were grouped (see below), the “COUNT” field 
was summed over all species in the group occurring in a given survey. Because observers were searching 
for all seabird species during surveys conducted at each unique location, the absence of a species record at 
one of these points generated an SPUE of 0 for that species at that location in that season. Note that these 
calculations assume perfect detectability; the implications of this assumption are discussed in Appendix 6.A 
(Section 6.A.14.). It was very uncommon for surveys to be centered at precisely the same location in the same 
season more than once over the 9 survey years (this occurred 6 times in spring, 2 in summer, 12 in fall, and 
2 in winter). Where this did occur, we used the weighted average SPUE for each species at that location, with 
weights proportional to survey tract areas (surveys with greater tract area received greater weight). 

This process resulted in four sets (one for each season) of georeferenced point measurements of SPUE, 
representing all seabird sightings that occurred in each season over the 9-year survey period. These datasets 
were coded in two ways for further analysis: 

(1) as binary variables indicating the occurrence (presence [1] or absence [0]) of a given species or group 
(Figure 6.2A: Stage I), and, 

(2) as non-zero continuous variables representing the relative index of abundance (SPUE) of each observed 
species at each location where it was present (Figure 6.2B: Stage II). 

Note the distinction between measures of occurrence, which refer to the frequency with which a species was 
sighted among independent 15-minute surveys, and abundance, which refers to the number of individuals 
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of a given species or species group sighted within a 15-minute survey, scaled to the transect area surveyed 
(SPUE). Note, also, that because detectability was not accounted for and individuals were not tracked over 
time, the indices of occurrence used here are not equivalent to the true frequencies of occurrence and indices 
of abundance are not equivalent to population abundance; they are only relative proxy measures. 

6.8.4. grouping and selection of species for modeling 
All individually identified species with 40 or more sightings in at least one season (Spring, Summer, Fall, Winter; 
defined in Section 6.8.3.) were selected for predictive modeling (Table 6.5, Table 6.6). Remaining species were 
grouped according to shared ecological and life history patterns and/or shared spatial and temporal patterns 
of occurrence (Table 6.2, Appendix 6.C; Pittmann and Huettmann, 2006), and groups were modeled where 40 
or more sightings occurred in at least one season. Remaining groups had no more than 23 sightings in any 
one season and were considered too rare to model. For each species or group, a season was only modeled 
if at least 40 records existed for that season, with the following exceptions: Common Terns were modeled in 
Fall despite only 33 sighting records, and Dovekie sighting records from Fall (n=27) and Spring (n=37) were 
combined with Winter (n=97) observations (Table 6.6). For groups and/or individual species that were not 
modeled, as well as for seasons in which a given species or group was too rare to model, point maps of all 
occurrences are presented. 

We note that other modeling methods might be capable of generating reliable predictions when fewer than 40 
records are present, but feel the uncertainties involved in extrapolating predictions from so few data make raw 
point maps of occurrence more suitable for these limited data cases, unless other information is available to 
predict distribution of these species based on biological characteristics and environmental preferences. The 
abundance of these birds is most conservatively treated as unknown (not zero) at locations in between sample 
points; the range of observed abundances over the entire study area can be used as a guide to the range of 
possible values at unsampled locations. 

6.8.5. Potential environmental predictors 
Based on available high-resolution data coverage within our study region and previous studies of environmental 
correlates of seabird distribution and abundance, we identified 11 potential environmental predictor variables 
(Figure 6.4, Chapter 4, Appendix 6.B, Online Supplement 6.1). Short codes used to refer to each predictor 
are given in parentheses: bottom depth (BATH), bottom slope (SLOPE), bottom slope-of-the-slope (SLPSLP), 
mean grain size of bottom surficial sediments (PHIM), linear distance from shore (DIST), signed linear distance 
from the shelf edge (SSDIST), sea surface temperature (SST), water column stratification (STRT), sea surface 
chlorophyll concentration (CHL), sea surface turbidity (TUR), and near surface zooplankton biomass (ZOO). 
It is important to note that this was only the candidate predictor set; a model selection process described 
below (Section 6.8.7.) narrowed down the set of predictor variables that contributed to any particular species/ 
group model in any particular season. We also wish to emphasize this is not a comprehensive list of all 
potential environmental influences on seabird abundance in the area, but instead is limited by such factors as 
the availability of high-resolution datasets collected over sufficiently long time frames to allow calculation of 
climatologies. 

The 11 identified predictors (Figure 6.4) were derived from 6 types of data: bathymetry and coastline, surficial 
sediments, water-column sampling, satellite ocean surface temperature, satellite ocean surface color, and 
ship-based plankton tows (Chapter 4). These datasets are described individually in Chapter 4, Appendix 6.B, 
and Online Supplement 6.1. For time-varying predictors (SST, STRT, CHL, TUR, ZOO), long-term average 
(climatological) ocean conditions were mapped by season (defined as in Table 6.3). Due to constraints of 
data availability, the climatological period of the environmental variables does not always match that of the 
seabird survey data. The implicit assumption is that the long-term climatological patterns of ocean conditions 
are reflective of the 1980-1988 period. Implications of this assumption are discussed in Appendix 6.A (Section 
6.A.14.). 

All grid processing was carried out using ArcGIS 9.3.1 with the Spatial Analyst extension (Environmental 
Systems Research Group [ESRI], Redlands, CA), Geostatistical Analyst extension (ESRI), XTools Pro 6.2.1 
for ArcGIS 9.x (Data East LLC, Novosibirsk, Russia), and Hawth’s Tools for ArcGIS 9.x (Beyer, 2004). All 
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predictor grids were co-registered on the 30 arc-second sampling grid (Chapter 4) and clipped to the spatial 
extent of the study area (Chapter 1, Figure 1.2). Grids were exported from ArcGIS in the .FLT binary floating 
point raster format for subsequent processing. All environmental predictors used in this study and associated 
metadata are available by contacting the corresponding author. 

Some predictors were gridded or re-sampled using interpolation algorithms (e.g., kriging, bilinear interpolation). 
Uncertainty in predictors resulting from interpolation was ignored for purposes of model formulation; that is, 
predictor values at each location were treated as perfectly known. This is likely to cause parametric estimates 
of uncertainty to underestimate prediction uncertainty when predictions are made at locations not included 
in model fitting. We address this uncertainty with the model evaluation, cross-validation, and uncertainty 
calibration procedures described in Appendix 6.A (Section 6.A.12.). Chapter 4, Appendix 6.B, and Online 
Supplement 6.1 also provide estimates of the relative uncertainty of each predictor layer as it is discussed. 

6.8.6. Seasonal predictive modeling 
A flowchart of the seasonal predictive modeling process is shown in Figure 6.2. In this figure, capital letters 
indicate the geospatial data and statistics that form the inputs and outputs of the modeling process. Numbers 
represent steps of the modeling process that transform geospatial information from step to step. Appendix 6.A, 
Statistical Methods, gives a detailed explanation of each process step and relevant equations and references. 

For each season with sufficient data within each species/group selected for predictive modeling, we model the 
transect estimates of SPUE as point samples (located at the centroid of each transect) of two spatial random 
processes, Stage I and Stage II (Figure 6.2A). Stage I uses binary (presence/absence) data from the MBO 
CSAP surveys (Figure 6.2A, left). Stage II uses relative abundance (SPUE) observations for each species or 
group from the same surveys, but does not consider locations where SPUE=0 (i.e., Stage II only considers 
observations where the species is present) (Figure 6.2A, right). This two-stage modeling approach has been 
successfully applied to model marine species distributions (Stefánsson, 1996; Ver Hoef and Jansen, 2007; 
Winter et al., 2011) and performs well in tests of alternative species distribution models (Potts and Elith, 2006). 

Within each stage of the model, we use a regression-kriging (RK) model framework to account for both seabird-
environment relationships and spatial structure (Hengl et al., 2007). Both Stage I and Stage II models include 
two components: a trend model that uses a generalized linear model (GLM) (Figure 6.2: boxes C, D and steps 
1, 2) and incorporates environmental predictors (Figure 6.2B), and a geostatistical model that accounts for 
spatial autocorrelation in the residuals from the GLM (Figure 6.2: boxes E, F and steps 3, 4). Statistically, this 
involves an assumption that the spatial processes are separable into trend and residual components. That is, 
at each location the observed value can be modeled as a sum of a deterministic linear combination of known 
predictor values (trend), and a realization of a spatial random field (residual). For more detailed discussion and 
mathematical treatment of RK models, see Hengl et al. (2007). Implications of the assumption of separability 
are discussed in Appendix 6.A (Section 6.A.14.). 

The trend (Figure 6.2C, D) and residual (Figure 6.2E, F) components of the Stage I and Stage II models are 
combined probabilistically (Stage I: Figure 6.2 step 5) or additively (Stage II: Figure 6.2 step 6) to yield the final, 
combined Stage I (Figure 6.2G) and Stage II (Figure 6.2H) models. Stage I and Stage II are then multiplied 
(Figure 6.2 step 7) to produce the final prediction of relative abundance (Figure 6.2I), the expected long-term 
average SPUE in repeated 15-minute standardized surveys randomly scattered in time within the modeled 
season during the 1980-1988 survey period. The multiplication of Stage I and Stage II arises from the fact that 
Stage I is the probability of presence, and Stage II is the abundance when present (Appendix 6.A). 

The final Stage I x II model prediction is then used to calculate a variety of model validation and evaluation 
statistics (Figure 6.2 box J and step 8), which are reported in the diagnostic tables shown later in this document, 
and in Appendix 6.C and Online Supplement 6.2. Due to the number and variety of diagnostic statistics 
calculated, they are not described in detail here. However, the most important diagnostic statistics are derived 
from a procedure called cross-validation (Cressie, 1993; Goovaerts, 1997; Deutsch and Journel, 1998; Hengl 
et al., 2007; Ross, 2007; Fox, 2008). In this procedure, 50% of the data for each species/group in each season 
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are selected at random to be used to fit the model (the “training set”). The remaining 50% of data form the 
“validation set” (also called the “holdout set”). The model fit using only the training set is subsequently used to 
predict observations in the validation set, allowing an independent assessment of the accuracy and predictive 
performance of the model when confronted with new data. Cross-validation is a powerful tool that allows 
assessment not only of prediction accuracy, but of the degree to which modeled uncertainty values capture the 
true uncertainty encountered in out-of-training-set prediction. 

Although models were fit using only 50% of data (the training set), the final maps presented in this document 
and in Appendices 6.C and 6.D were produced by applying the final model to the entire dataset (training and 
validation sets combined). Thus the cross-validation diagnostic statistics provide a conservative estimate of 
model performance, as the final maps are based on a dataset which is twice the size of the training and 
validation subsets. Online Supplement 6.2 provides detailed diagnostic reports on each step of the model 
fitting process, and shows the maps produced using the restricted 50% training subset. 

Figure 6.3 provides an example of each of the lettered inputs and outputs in the Figure 6.2 flowchart, using 
the example of the Dovekie (Alle alle) winter seasonal model. Figure 6.4 shows the potential environmental 
predictor set, with only the winter panel shown for dynamic variables (SST, STRT, CHL, TUR, ZOO). Note 
that the predictor variables shown in Figure 6.4 are untransformed, whereas transformed versions of some 
variables were used for statistical modeling. Transformed versions, and all four seasonal panels for dynamic 
variables, can be found in Appendix 6.B. 

Unless otherwise noted, all predictive modeling analyses were carried out in Matlab R2011a (version 7.12.0.635; 
The Mathworks, Natick, MA), with the Statistics, Mapping, and Image Processing toolboxes (Mathworks), 
mGstat (Hansen, 2009, http://mgstat.sourceforge.net/), ROC (Cardillo, 2008), partest (Cardillo, 2008), lowess 
(Burkey, 2009), ploterr (Zörgiebel, 2008), boxcoxlm (Dror, 2006), and additional custom code available by 
contacting the authors. Geostatistical algorithms (kriging, generalized least squares estimation of trend model 
coefficients, variogram estimation, and variogram model fitting) were implemented by calling the program 
gstat (standalone version 2.5.1; Pebesma and Wesseling, 1998; http://www.gstat.org/) from within Matlab, 
with the help of the mGstat toolbox. GLM model selection was carried out by calling the R package glmulti 
(Calcagno and Mazancourt, 2010; Calcagno, 2011; [http://cran.r-project.org/web/packages/glmulti/index.html]) 
from within Matlab. All Matlab code is available from the corresponding author on request. 

6.8.7. generation of annual maps 
The seasonal modeling process described in Figure 6.2, Section 6.8.6., and Appendix 6.A was repeated for 
each species and species group, in each season for which sufficient data existed to estimate the model (Table 
6.6). Seasonal predictions were then summed to produce annual climatological maps of SPUE for each species 
and species group (Appendix 6.A., Section 6.A.13.). Seasonal Stage I predictions (presence probability maps) 
were also combined probabilistically to produce “integrated annual presence probability” maps, which reflect 
the probability of each grid cell being occupied in at least one season of the year, assuming independence of 
seasonal predictions (Appendix 6.A., Section 6.A.13.). 

Relative uncertainty of the annual SPUE and annual integrated presence probability maps was calculated as 
the weighted average of the seasonal Stage I and Stage IxII relative uncertainty estimates, respectively, with 
weights proportional to the overall frequency of species occurrence in that season. In this way, the annual 
relative uncertainty maps were weighted to reflect periods when the species was most prevalent. Mathematical 
details of the relative uncertainty calculations are given in Appendix 6.A (Section 6.A.11.). 

“High”, “Medium”, and “Low” certainty classes (corresponding to low, medium, and high uncertainty, 
respectively) were assigned based on the relative uncertainty value (Section 6.A.11.). The High certainty 
class was defined by relative uncertainty values <=0.50, the Medium certainty class was defined by relative 
uncertainty values >0.5 but <=0.65, and the Low certainty class was defined by relative uncertainty values 
>0.65. These certainty classes were based on inspection of the cross-validation error vs. relative uncertainty 
calibration plots presented as part of each species/group profile in Appendix 6.C. 
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6.8.8. hotspot analysis 
To examine “hotspots” (or “coldspots”) of particularly high (or low) seabird abundance, species richness, and 
diversity (a combined measure of species richness and evenness), we combined results from the individually 
mapped species and species groups. We combined maps in two ways: 

1. Using only species that were individually mapped (see Table 6.2). 
2. Using both species that were individually mapped and species groups (Table 6.2). 

Results of (1) and (2) were qualitatively similar and so we show only the second set of results, that is, maps 
derived from a combination of individually mapped species and species groups. Both seasonal and annual 
species/group maps were combined to produce seasonal and annual hotspot maps. For additional information 
on the rationale behind hotspot analyses, see Box 6.3. 

6.8.8.1. Abundance 
Abundance hotspots are defined as concentrations of large numbers of individual seabirds, regardless of 
species. To calculate annual abundance hotspot maps, predicted SPUE annual climatology maps were 
summed, with the sum taken at each grid cell location over all species and groups for which predictions were 
available. Seasonal maps were calculated in a similar way, and are presented in Appendix 6.D. 

6.8.8.2. Species richness 
To calculate species richness hotspot maps, we chose an arbitrary threshold to define a species as functionally 
present; if its predicted abundance in the final annual SPUE climatology map was ≥ T, where T = the 10th 
percentile of the observed relative abundance (SPUE) of the species when present, divided by 10. After 
applying this threshold to each species map (i.e., values < threshold were set to 0 and values ≥ threshold were 
set to 1), the resulting binary presence/absence maps were summed to produce the annual species richness 
hotspot map. Seasonal maps were produced in a similar way using the seasonal SPUE climatologies (Stage 
IxII maps). 

Since groups contain more than one species, they could potentially contribute more than 1 unit to species 
richness. An upper bound on group contribution to richness was calculated by repeating the summation after 
multiplying each binary group presence/absence map by the number of true species in the group (not including 
any unidentified types). The ‘unidentified gull’ group was excluded from all species richness analyses because 
it had no identifiable species. 

Final richness maps show the midpoint between the lower bound on species richness, assuming each group 
contributed just one species, and the upper bound, assuming all species in a group were present. These maps 
likely over-represent actual species richness observable at any given time and location, since not all species in 
a group are equally common, and since even common and abundant species are highly mobile and will not be 
observed in every survey even at the locations of their highest predicted abundance. They are only intended 
as a relative index of potential long-term species richness at each location (the number of species likely to be 
encountered over long periods of time, such as the ~9-year MBO CSAP study period). 

6.8.8.3. Diversity 
Species richness alone can over-represent the effective diversity of an area if many species are present only 
at very low abundances relative to their abundance elsewhere. We found this to be the case for our maps of 
species richness, and so we also report the common Shannon diversity index (H’) (Krebs, 1989). Because 
this index requires the total number of species to remain the same to allow comparison from one location 
to another, species that were not present at a given location were assigned a very low abundance (SPUE = 
0.0001), chosen to be at least 10 times lower than any observed SPUE in the dataset. For this analysis, each 
group was counted as a single species, regardless of the number of species in the group. Unidentified gulls 
were included and counted as a single species. 

Like species richness, the diversity index hotspot maps will likely overestimate the diversity observed at any 
instant in time. Instead, they are intended to represent the long-term potential diversity of an area, based on 
model predictions. 
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6.8.8.4. Hotspot uncertainty 
As a general guide to the level of certainty about each of the hotspot maps (abundance, richness, and diversity), 
we calculated a weighted average of the relative uncertainty maps associated with each annual and seasonal 
predicted SPUE climatology map. Weights used were proportional to the frequency of the species in the 
corresponding season or year (similar to the weighting scheme used for seasonal maps described in Appendix 
6.A [Section 6.A.13.]). This resulted in the final hotspot relative uncertainty maps (see Appendix 6.D). 

“High”, “Medium”, and “Low” certainty classes (corresponding to low, medium, and high uncertainty, respectively) 
were assigned based on the relative uncertainty value in the same manner as for the other annual maps (see 
Section 6.8.7.). Hotspot certainty classes are presented as overlays on Figures 6.35-6.37. 

6.9. reSultS 
Seasonal predictive modeling was carried out for 58 season/species combinations and for the ‘no birds sighted’ 
category in 4 seasons (Table 6.6). In all, 44 species were modeled in the 58 seasonal models. 14 species were 
modeled individually, and 30 species were modeled as part of the 9 modeled species groups. These groups 
also included sightings from 15 categories not identified to species level, but still identifiable to group level (all 
sightings were identified at least to family level). 17 species/types were too rare in the study area to model: 3 
Cormorant species, the South Polar Skua, 10 rare visitor/migrant species, and 4 unidentified types that fell into 
one of these three groups (Table 6.2). 

Overall, diagnostic statistics indicated that most models were successful in describing some aspects of species 
distribution, although model performance varied over space and from species to species. Environmental 
predictors contributed significantly to the predictive ability of most models. Figure 6.5 summarizes the relative 
importance of different environmental predictor variables across the seasonal predictive models. The relative 
importance of different model components (trend model, spatial model, ‘white noise’ error term) varied from 
Stage I to Stage II and among species/groups, although similarities in model structure were often observed 
across different seasons for a given species/group (Figure 6.6). ‘White noise’ refers to random variability that 
is not spatially structured and is not predictable based on available environmental variables; therefore, models 
with higher white noise components have less predictive power. It can be thought of as indicating a higher 
degree of expected variability around the mean if the same spot were visited repeatedly, even under identical 
environmental conditions. Model performance also varied, and any application of these models should consider 
the performance metrics most relevant to the application in question. Figure 6.7 summarizes several selected 
seasonal model diagnostic statistics. Table 6.7 summarizes some cross-validation performance diagnostics 
from seasonal predictive models. More detailed information about model performance is given in the species 
summaries that follow (Box 6.1) and in Appendix 6.C and Online Supplement 6.2. 

Box 6.1 describes the Annual Predictive Model Summaries that were produced for each species and group. 
Maps of predicted long-term average annual relative abundance (SPUE) for each of the 14 individually modeled 
species are shown in Figures 6.8 to 6.21, and maps for the 9 modeled species groups are shown in Figures 
6.22 to 6.30. Three additional species groups (Cormorants, Skuas, and Rare visitors) had insufficient data to 
model; only point-estimates of SPUE at transect centroids are shown for these non-modeled species (Figures 
6.31-6.33). These are followed by a predictive model of an index of the frequency and extent of 15-minute 
surveys in which no seabirds were detected (Figure 6.34A) and the probability for each grid location of at least 
one ‘no birds sighted’ survey occurring during one of the four seasonal periods (Figure 6.34B). The index of ‘no 
birds sighted’ is measured in units of km2 transect area in which no birds were detected per 15-minute survey. 
Box 6.2 discusses the interpretation and potential utility of the ‘no birds sighted’ model. Following the species, 
group, and ‘no birds sighted’ models, hotspot analyses of abundance, richness, and diversity are presented 
(Figures 6.35 to 6.37) and discussed (Box 6.3). Finally, a point map is presented of sightings for species of 
particular concern (Figure 6.38). 

As described in Box 6.1, all maps are accompanied by a data summary table. Where predictive modeling was 
done, predictor summary tables and diagnostic summary tables are also included. Box 6.1 describes the color 
coding used in these tables to provide an overall assessment of the relative performance of a model. 
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Figure 6.6. Summary of variance partitioning in model fits among the trend component, spatial component (residual variogram ‘sill’)
and white noise component (residual variogram ‘nugget’), for A) Stage I (Occurrence Model), and, B) Stage II (Abundance-when-
present Model). For details of variance component calculations, see Appendices 6.A and 6.C and Online Supplement 6.2. 
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Figure 6.7. Summary of annual cross-validation model diagnostic statistics. A) Stage I – Cross-validation AUC; reference line 
is plotted at the threshold value of 0.5 below which the model has no predictive value. B) Stage II - cross-validation % correctly 
predicted within parametric 1 S.D. confidence intervals; reference line is plotted at the theoretical target value of 68.3%. 
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Table 6.7 Summmary of cross-validation diagnostic statistics for annual models*. 
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DiagNoStic StatiSticS** 

 SPecieS or grouP NaMe rank r %1SD auc p(auc) MaPe rel. 
Mae 

rel. 
rMSe 

rel. 
Bias 

Species 
Black-legged Kittiwake 0.02 84.0% 0.47 0.7011 145% 44% 78% 14% 
Common Loon -0.04 33.3% 0.77 0.0000 258% 40% 67% 41% 
Common Tern 0.26 46.7% 0.77 0.0000 579% 24% 34% 18% 
Cory’s Shearwater 0.20 78.6% 0.64 0.0000 112% 22% 69% 5% 
Dovekie 0.20 62.3% 0.71 0.0000 216% 5% 15% 5% 
Great Black-backed Gull 0.32 91.4% 0.77 0.0000 134% 33% 46% 7% 
Great Shearwater 0.07 75.6% 0.65 0.0000 221% 27% 65% -1% 
Herring Gull 0.13 82.8% 0.56 0.3192 176% 43% 70% -11% 
Laughing Gull 0.33 76.1% 0.89 0.0000 161% 15% 28% 0% 
Northern Fulmar 0.21 53.3% 0.80 0.0000 396% 60% 101% 46% 
Northern Gannet 0.17 87.9% 0.64 0.0095 259% 32% 48% 0% 
Pomarine Jaeger 0.30 66.7% 0.64 0.0012 590% 11% 15% 9% 
Sooty Shearwater 0.28 72.4% 0.62 0.0025 135% 19% 27% 21% 
Storm-Petrels, less common 0.24 61.5% 0.63 0.0072 306% 18% 25% 22% 
Wilson’s Storm-Petrel 0.29 75.2% 0.68 0.0000 396% 45% 95% -17% 

Mean 0.20 69.9% 0.68 n/a 272% 29% 52% 11% 

Groups 
Alcids, less common 0.22 76.7% 0.59 0.0509 158% 23% 33% 26% 
Coastal Waterfowl 0.20 64.3% 0.77 0.0000 395% 22% 66% 14% 
Jaegers -0.16 65.4% 0.62 0.0213 471% 13% 25% 10% 
Phalaropes 0.16 70.6% 0.76 0.0000 908% 23% 77% -9% 
Shearwaters, less common -0.05 76.5% 0.51 0.3915 156% 21% 32% 26% 
Small gulls, less common 0.16 77.8% 0.72 0.0011 131% 27% 32% 34% 
Terns, less common 0.52 61.9% 0.67 0.0047 874% 26% 39% 28% 
Unidentified Gulls 0.14 56.8% 0.62 0.0173 291% 21% 27% 26% 

Mean 0.15 68.7% 0.66 n/a 423% 22% 41% 19% 

Special category 

‘No birds sighted’ 0.13 70.6% 0.54 0.2539 63% 297% 466% 433% 

*Cross-validation was performed by aggregating data and predictions in 10x10 cell (~9x9 km) bins. This was 
necessary because cross-validation data locations did not match up exactly from season to season. See Ap-
pendices 6.A and 6.C for details. 
**Diagnostic statistics are explained in Box 6.1, Table B. 
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Box 6.1. Predictive modeling summary guide.
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Black-legged Kittiwake (Rissa tridactyla)

Figure 6.8. Predicted annual average relative index of abundance (SPUE, # indiv./
km2/15-min) for Black-legged Kittiwake, with certainty classes overlaid.

Common Loon (Gavia immer)

Table 6.9. Data table: Black-legged Kittiwake.

Table 6.10. Predictor table: Black-legged Kittiwake.

Table 6.11. Diagnostic table: Black-legged Kittiwake.

Statistic SP SU FA WI All
N obs. 195 2 347 546 1090
Freq. (%) 7.7% 0.1% 12.5% 47.6% 11.9%

Mean 9.17 0.96 6.29 8.17 7.73
10th%ile 1.47 0.20 1.09 1.76 1.45
Median 4.40 0.96 4.24 4.80 4.60
90th%ile 19.96 1.73 13.62 16.20 16.27
Max 121.59 1.73 57.90 153.44 153.44

SPUE when present (No. indiv./ km 2 /15 min.)

Sp  Su  Fa  Wi  Sp  Su  Fa  Wi 
BATH 4 Na 0 0 0 Na 1 0
SLOPE 0 Na 3 3 0 Na 0 2
DIST 0 Na 0 0 0 Na 3 2
SSDIST 4 Na 0 0 1 Na 1 0
SST  5 Na 5 1 0 Na 0 1
STRT 0 Na 0 5 0 Na 0 0
TUR 0 Na 0 3 0 Na 0 0
CHL 3 Na 5 0 1 Na 3 1
ZOO 0 Na 5 5 1 Na 1 0
SLPSLP 0 Na 0 0 4 Na 0 0
PHIM 4 Na 1 0 1 Na 0 1

Predictor
Occurrence  Abundance 

`
Low Med. High ALL

%area %area %area Avg.
84% 16% 0% LOW

Rank R 0.16 ‐0.13 n/a 0.02
%1SD 81.2% 90.0% n/a 84.0%
AUC 0.63 0.64 n/a 0.47
p(AUC) 0.02 0.06 n/a 0.70
MAPE 141% 134% n/a 145%
Rel.MAE 44% 42% n/a 44%
Rel.RMSE 80% 67% n/a 78%
Rel.Bias 25% 10% n/a 14%
Bias Dir. + ‐ +

Certainty class
Diagnostic 
statistic

¯
New York

CT

NJ

RI MA

Figure 6.9. Predicted annual average relative index of abundance (SPUE, # indiv./
km2/15-min) for Common Loon, with certainty classes overlaid (see legend in Figure 6.8).

Photo by: David Pereksta, BOEM
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Table 6.12. Data table: Common Loon.

Table 6.13. Predictor table: Common Loon.

Table 6.14. Diagnostic table: Common Loon.

Sp  Su  Fa  Wi  Sp  Su  Fa  Wi 
BATH 0 Na 0 5 0 Na 0 0
SLOPE 1 Na 0 5 0 Na 0 0
DIST 0 Na 5 5 1 Na 0 0
SSDIST 5 Na 0 5 0 Na 0 0
SST  0 Na 4 5 0 Na 0 0
STRT 5 Na 0 5 1 Na 0 0
TUR 0 Na 0 5 0 Na 0 0
CHL 0 Na 0 5 1 Na 0 0
ZOO 3 Na 0 5 0 Na 0 0
SLPSLP 0 Na 0 5 0 Na 0 0
PHIM 0 Na 0 5 1 Na 0 0

`

Predictor
Occurrence  Abundance 

Statistic SP SU FA WI All
N obs. 112 4 60 40 216
Freq. (%) 4.4% 0.1% 2.2% 3.5% 2.4%

Mean 0.59 0.51 0.28 0.46 0.48
10th%ile 0.16 0.27 0.10 0.12 0.13
Median 0.36 0.49 0.18 0.24 0.27
90th%ile 0.92 0.80 0.54 1.17 0.80
Max 9.49 0.80 1.92 2.53 9.49

SPUE when present (No. indiv./ km 2 /15 min.)

Low Med. High ALL
%area %area %area Avg.
30% 16% 54% MED.

Rank R 0.08 0.33 n/a ‐0.04
%1SD 16.0% 66.7% n/a 33.3%
AUC 0.58 0.57 n/a 0.77
p(AUC) 0.13 0.27 n/a 0.00
MAPE 204% 90% n/a 258%
Rel.MAE 40% 17% n/a 40%
Rel.RMSE 82% 24% n/a 67%
Rel.Bias 87% 27% n/a 41%
Bias Dir. + + +

Certainty class
Diagnostic 
statistic

a

B

c

D

e

f

PreDictive MoDeliNg SuMMarY guiDe
On the following pages the annual predictive models for each species and species group are summarized in 
a standardized layout like the example above. The elements of this model summary are as follows:
 
A. Common name (Scientific name) of the species; or group name (number of species)
 
B. annual climatological predicted relative abundance (Sightings Per Unit Effort [SPUE], No. indiv./
km2/15-minute survey). Predicted SPUE is indicated by the color gradient, which is logarithmically scaled as 
indicated by the color bar at right. Certainty classes are overlaid on model predictions, as indicated in the 
legend of the first figure in the series (Figure 6.8). The NY planning area and the shelf edge are denoted by 
a magenta dotted line and a solid black line, respectively (see legend in Figure 6.8). 

c. A photo of an individual of the species, or of one representative species in the group. 

D. Data summary table. The input data used to fit and test the model are summarized by season and over 
all seasons. “N obs.” indicates the number of independent surveys in which a species or group was sighted; 
“Freq. (%)” is the relative frequency of sighting; the rest of the table reports statistics of non-zero data only 
(relative abundance when the species was present).

e. Predictor summary table. This table summarizes the variables included in each of the seasonal trend 
GLM models for Occurrence (Stage I) and Abundance (Stage II). P-values for Bonferroni-corrected post-hoc 
significance tests of each effect (minimum p-value considering main effect and any interactions in which the 
variable occurs) are indicated by color shading (Box Table A).
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Variables that were not included are 
indicated by white squares. Seasons 
that were not modeled are indicated 
by an “X” through the corresponding 
columns of the table. 

f. Diagnostic summary table. The 
first row of this table reports the 
percentage of the NY study area that 
falls into each certainty class (“Low”, 
”Med”, ”High” columns), and the certainty class that would be assigned based on the average relative 
uncertainty value calculated over the whole NY study area (“ALL” column). The rest of the table reports 
cross-validation error statistics for each certainty class (based on the 50% of the data that were withheld 
from model fitting). Cells are color coded based on whether the results of each diagnostic can be considered 
“excellent” (green), “fair” to “good” (yellow), or “poor” (red). See Box 6.1:Table B for a list of the diagnostic 
statistics, notes on how they were calculated, and values used to define the “excellent”, “fair to good”, and 
“poor” categorization. Note that the color-coding of diagnostic statistics should be considered a general 
guideline to model performance; the usefulness of model predictions in any specific case often depends on 
the details of the application. One diagnostic statistic may be important for one application, but irrelevant for 
another.

Box 6.1:Table A. Color shading for P-values.

color P-value
Red p>0.1

Orange p<0.1
Yellow p<0.05

Light green p<0.01
Green p<0.001

Box 6.1:Table B. Description of diagnostic statistics and color-coding of diagnostic tables. Cutoff values for “Poor”, “Fair”, “Good”, 
and “Excellent” are subjective and qualitative categories and are intended as an interpretative aid, not a formal statistical test.

Diagnostic 
statistic Description calculated with Poor fair to good excellent

Rank R

%1SD

AUC

p(AUC)

MAPE

Rel.MAE

Rel.RMSE

Rel.Bias

Bias Dir.

Spearman rank correlation coefficient of 
observed vs. predicted
Percent of observations within +/- 1 standard 
deviation (or standard error) confidence 
intervals of predicted value; theoretical ex-
pectation is 68%
Area Under Curve statistic; area under the 
receiver operating characteric (ROC) curve 

p-Value for significance test of the AUC 
statistic
Mean Absolute Percentage Error = 
mean(|obs-pred|/obs)*100%
Relative Mean Absolute Error (expressed as 
a % of the 90th percentile - 10th percentile 
range of the data)
Relative Root Mean Square Error (ex-
pressed as a % of the 90th percentile - 10th 
percentile range of the data)
Relative Absolute Bias (expressed as a % of 
the 90th percentile - 10th percentile range of 
the data)
Sign (+ or -) of the Bias statistic. + indicates 
predicted value tends to be greater than 
observed value.

Non-zero cross-validation data

Non-zero cross-validation data

All binary cross-validation data 
(presence/absence); maximum 
predicted probability in bin used 
as ROC classifier 
Non-zero cross-validation data

Non-zero cross-validation data

All cross-validation data

All cross-validation data

All cross-validation data

All cross-validation data

x<0.05

x<20%

x<0.55

x>0.20

x>150%

x>100%

x>100%

x>100%

n/a

0.05<=x<0.3

20%<=x<50%

0.55<=x<0.75

0.20>=x>0.01

150%>=x>50%

100%>=x>25%

100%>=x>25%

100%>=x>25%

n/a

x>=0.3

x>=50%

x>=0.75

x<=0.01

x<=50%

x<=25%

x<=25%

x<=25%

n/a
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profiles including seasonal maps for each species and group (and the “no birds sighted” category) are given in 
Appendix 6.C. These profiles include overlays of original data points on model predictions, the seasonal predictions 
that went into each annual map, more detailed quantitative maps of relative uncertainty, details on the structure of 
each model, histograms showing the temporal occurrence of each species/group, and results of the cross-validation 
accuracy assessment for each model. Similar seasonal profiles for hotspot analyses are given in Appendix 6.D. 
Readers interested in application of the models presented in this report are urged to consult Appendices 6.C and 
6.D to evaluate seasonal variation in model predictions, and the performance of each model in independent cross-
validation.

Below, very brief notes are given on predictive model results for each species and group, in relation to species 
life history and occurrence in the study area. These notes are intended only as an initial introduction and 
qualitative description of model results; the maps and diagnostics presented in figures, tables, appendices, 
and online supplements convey more detailed results for each species.

6.9.1. Species notes
Black-legged Kittiwake (Rissa tridactyla)
The Black-legged Kittiwake (Figure 6.8, Tables 6.9-11) is one of the most abundant and frequently sighted 
species in the study area. The majority of sightings were made between late fall and early spring. The species 
breeds along coasts in the Arctic and sub-Arctic in summer, and winters out at sea along the Pacific and 
Atlantic coasts, including the study area. Predicted abundance was highest in the north and central parts of 
the study area, especially south of the eastern tip of Long Island, in the Hudson Shelf Valley vicinity, and south 
of Nantucket Shoals. This pattern was fairly consistent across seasons. Model predictive ability was marginal 
with a high proportion of white noise (unpredictable random variation) and poor ROC performance. However, 
some of the other diagnostic statistics indicate acceptable performance, especially in the “medium” certainty 
class.

Common Loon (Gavia immer)
The Common Loon (Figure 6.9, Tables 6.12-14) is a coastal species during the non-breeding season (i.e., 
outside of summer), and this is reflected in model predictions. Hotspots of predicted abundance occur all along 
the shore, especially in the vicinity of New York Bay, the NJ shore, Long Island, Block Island, and Martha’s 
Vineyard. Loons are fairly commonly sighted nearshore in spring, fall, and winter, and range furthest offshore 
in spring; otherwise patterns were consistent across seasons. Model predictive ability was generally good, 
with low white noise, excellent overall ROC performance, and excellent performance in the ‘high’ certainty 
class that dominated the study area. The small white (blank) spot southeast of Block Island is a place where 
predictions were masked out because they were both extremely high (beyond the range of the data) and 
extremely uncertain (beyond the threshold over which we considered predictions too uncertain to map, and 
unsupported by any nearby data points). The high values around the edges of this blank spot are also fairly 
uncertain. Expert judgement is that this apparent hotspot is not likely to be real (D. Veit and P. Paton, pers. 
comms.). Also, because this is a highly coastal species, and the coverage of the Manomet dataset is poor 
nearshore, the abundance estimates for this species may be biased low. For example, the RI SAMP study 
(Paton et al., 2010) found that Common Loons were relatively common in RI waters in the winter.

Common Tern (Sterna hirundo)
Although the Common Tern (Figure 6.10, Tables 6.15-17) is the most widespread tern species in North America 
it is relatively infrequent in the study area dataset (<3% prevalence). This is likely partially due to the poor 
coverage of the MBO CSAP data in very nearshore areas: the species prefers coastal habitats along the 
ocean, rivers and lakes, which abut, but are not part of the study area. The largest Common Tern colony in 
the region (15,000+ individuals) is on Great Gull Island at the east end of Long Island Sound. There is an 
influx of Common Terns into more offshore waters in April and May, with peak abundance in the summer 
breeding months and trailing off into December. The model predictions reflect this seasonal pattern and the 
expected nearshore distribution. The species is listed as Threatened by New York. Predicted abundance is 
highest nearshore, especially south of Long Island. The area of high predicted abundance near Jamaica Bay 
is well-supported by data offshore, but not by any nearshore data points, and so should be interpreted with 




