
Appendix 6.A. Statistical Methods 
6.A.1. Model Overview 
We adopt a two-stage approach that separates a model of the presence probability of a species from a model 
of its relative abundance when it is present. This approach has been successfully used to model highly zero-
inflated marine distribution data (e.g., Stefánsson, 1996; Ver Hoef and Jansen, 2007; Winter et al., 2011). This 
technique is also referred to in the statistical literature  as a hurdle model (Cragg, 1971; Potts and Elith, 2006; 
Ver Hoef and Jansen 2007). In our case we refer to the two parts of the model as Stage I and Stage II. Stage I 
models the probability, pi(x,y),  that species or group i  is observed in a survey at location (x,y)  in a given season 
(models were repeated for each season, but seasonal subscripts are omitted for simplicity): 

 pi(x,y) ≡ Prob(i observed at <x,y> in a single 15-minute survey)   Eq. 1 (Stage I) 

Here, pi(x,y)  is treated as a spatial random variable whose value is a probability; the details of how it is modeled 
are discussed below and in Sections 6.A.4., 6.A.5., and 6.A.6. We do not distinguish between observation 
and presence; the probability pi(x,y) is assumed to be equal to the probability that the species was actually 
present during a single 15-minute survey conducted over the 9-year study period. In other words, probability 
of detection when the species is present is assumed to be 1; consequences of this assumption are discussed 
in Section 6.A.14. 

Stage II models E{Zi(x,y) | Pi(x,y)=1}, the long-term mean of the observed relative abundance (SPUE), Zi(x,y),  
of species or group i at location (x,y) when the species or group is present: 

     E{ Zi(x,y) | Pi(x,y)=1}   Eq. 2 (Stage II) 

Here Zi(x,y)  is a continuous random variable representing relative abundance (number of individuals sighted 
per 15-minute survey per km2  of survey area), and Pi(x,y) is a Bernoulli random variable whose probability of 
success in a single trial is given by pi(x,y). Note that E{A|B} represents the conditional expectation operator, 
which returns the expected value (arithmetic average over many trials) of the random variable A, given the 
value of the random variable B. This expected value can be thought of as the average SPUE that would have 
been recorded if the same location had been visited many times, instead of only once, during the 9-year survey 
period, and only non-zero values were included in the average. In this model, the observed value of SPUE at 
each location is our single observation of the random variable Zi(x,y), conditional on the outcome of Pi(x,y) at 
that location (0 if species i is absent, 1 if present). Over a 9-year period, assuming 6 hours of potential survey 
per day, approximately 20,000 temporally non-overlapping surveys could have been  conducted at each location 
in each season. If hypothetical repeat surveys were conducted and averaged (excluding zero observations), 
then the value  of that average would approach that of equation 2 as the number of repeat surveys increased, 
if the relevant assumptions outlined in Section 6.A.14. are also met. 

The MBO seabird data, processed as described in Section 6.8.3., are conceptually modeled as a set 
of outcomes of the purely spatial (non-temporal) random variables Pi(x,y)  (Stage I) and Zi(x,y) conditional 
on Pi(x,y)=1 (Stage II).  This relies on the basic assumption that the parameters that define these random 
variables (described in more detail below) do not vary over time within a season or among survey years. 
Implications of this assumption are discussed in Section 6.A.14. The use of spatial random variables without 
an explicit temporal component is termed a spatial climatological approach and has been used elsewhere to 
map “hotspots” and “coldspots” in long-term average patterns of species distribution (e.g., Santora and Reiss, 
2011). The word climatology in this context means long-term average. 
 
Both Stage I and Stage II of the model are themselves comprised of two sub-models: a trend model and a 
residual model, described  in more detail below. The trend models are implemented as generalized linear 
models (GLMs), and predict large-scale variation in a species’  distribution from environmental variables. The 
residual models are implemented as geostatistical models (kriging) to account for spatial autocorrelation in the 
residuals from the trend (Cressie, 1993; Pebesma, 1998). 
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The GLM trend component was necessary because  exploratory data analysis showed that both probability 
of presence (Stage I) and abundance when a species is present (Stage II) showed large-scale trends that 
were related to environmental variables. Notably, presence/absence often showed different large-scale spatial 
patterns than abundance when the species was present, motivating the two-stage approach. Other types of 
trend models are possible, and could be explored in future work (e.g., generalized additive models, classification 
and regression trees). 

The geostatistical component was necessary because the data are clustered and unevenly distributed in 
space, and preliminary analysis after removal of large-scale trends with GLM revealed autocorrelation in the 
spatial pattern of residuals. When this is the case, spatial dependence must be explicitly modeled to obtain 
unbiased estimates of GLM coefficients, as well as to properly model uncertainty at unsampled locations 
(Cressie, 1993; Chiles and Delfiner, 1999). A  major advantage of the hybrid GLM-geostatistical approach is 
that predictions are accompanied by spatially explicit estimates of uncertainty, because spatial dependence in 
error fields is explicitly modeled (Pebesma, 1998). 

The final seasonal model prediction of SPUE is the product of Stage I and Stage II maps, which gives the 
unconditional expected value of Zi(x,y): 

  E{ Zi(x,y) } = pi(x,y) * E{Zi(x,y) | Pi(x,y)=1}   Eq. 3 (Stage I x II) 

This result follows directly from application of basic laws of probability and conditional expectation for random 
variables (Cragg, 1971; Ross, 2007). The final predicted value represents the average number of birds that 
would be seen if a site was surveyed repeatedly (using the same standardized 15-minute surveys), including 
times when the species was not seen as values of 0. 

The seasonal  modeling process can be summarized as follows. For each species and group, for each season 
that can be modeled, the following steps are performed: 

1.  Transform potential predictor variables for linearity. See Section 6.A.2. below. 

2.  Divide data into training and validation (“holdout”) subsets for cross-validation purposes. See Section 
6.A.3. below. 

3.  Stage I trend model: Use a GLM (binomial distribution, logit link) to generate a predictive map of the mean 
probability of species occurrence. See Section 6.A.4. below. 

4.  Stage I residual model: Use ordinary indicator kriging (OIK) to predict the “residual” probability map, 
where “residual” is defined as the probability that the regression model leads to an incorrect classification 
of the presence state (Pi(x,y)) of a given location. See Section 6.A.5. below. 

5.  Final Stage I model: Adjust the trend-predicted probability map using the kriged residual probability map 
from step 4. The trend from step 3 and residual from step 4 are combined using probability laws. See 
Section 6.A.6. below. 

6.  Stage II trend model: Use a GLM (normal distribution, identity link) to generate a predictive map of the 
mean abundance of a species when it is present. Data were transformed for normality for this part of the 
analysis using a Box-Cox type transformation (Box and Cox 1964), described further below, and back-
transformed for final maps. See Section 6.A.7. below. 

7.  Stage II residual model: Use Simple Kriging (SK) to predict residual map of the regression model of 
abundance. See Section 6.A.8. below. 

8.  Final Stage II model: Add the trend map from step 6 and the residual map from step 7. See Section 6.A.9. 
below. 

9.  Final Stage I x II model prediction: Multiply the predicted probability of occurrence at each location by the 
predicted abundance if present to produce the final prediction of the expected value (long-term average) 
of abundance at each location. See Section 6.A.10. below. 



10. Relative uncertainty calculation: scaled relative uncertainty values were calculated for the trend, residual, 
and final models for Stage I and Stage II, and for the final Stage IxII prediction. See Section 6.8.11. below. 

11.  Model evaluation, cross-validation, and relative uncertainty calibration. See Section 6.A.12. below. 

The sections below describe each of these steps in detail. 

6.A.2. Transformation of potential predictor variables for linearity 
Transforming independent  variables in a multiple linear regression context for normality, centrality, and 
homogeneity of variance is often desirable for stabilizing estimates of regression parameters, and can also 
help to linearize relationships between predictors and response (Sokal and Rohlf, 1995). The family of power-
law transformations studied by Box and Cox (1964) is particularly useful for improving both normality and 
linearity. A  Box-Cox transformation is defi
transformed variable: 

     
         

ned as follows, where X  denotes the original variable and X*  the 

   Eq. 4
	

 

A   maximum-likelihood procedure (Box and Cox, 1964; Dror, 2006) was used to estimate the Box-Cox 
transformation parameter  λ  for each 
potential predictor variable, and guide the 
final choice of stabilizing transformation 
for each predictor. A  priori  knowledge 
about the types of transformations 
likely to be justified for different types of 
variables was also considered (Sokal and 
Rohlf, 1995). Predictor transformations 
expressions are shown in Table 6.A.1. 
Note that the transformation of some of 
these variables changes the sign of the 
linear relationship between variable and 
response; care must therefore be taken 
in interpreting the signs of regression 
coefficients for transformed predictors. 
Details of transformation choices 
and pre- and post-transformation 
distributions are given in Appendix 6.B. 
and Online Supplement 6.1. 

Transformed predictor variables were centered and standardized prior to each GLM fit, using the set of 
values of each predictor variable at the data locations  under consideration (centering and standardization was 
performed each time just prior to running the GLM, because different patterns of missing predictor data could 
cause different data points to be used, requiring re-centering and re-standardization). 

6.A.3. Selection of training and validation subsets for cross-validation 
50% of the observation locations were selected at random to be used in subsequent model-fitting (henceforth 
referred to as the training set), with the remaining 50% withheld for cross-validation (henceforth referred to 
as the validation or holdout set). All model selection and model fitting (Sections 6.A.4. to 6.A.10.) was carried 
out using only the training set. Cross-validation statistics were calculated by comparing model predictions at 
the holdout locations to the true data values at the holdout locations. Final predictive maps, however, used 
all available data by applying the models selected and fit based on training data to the entire original dataset. 
Cross-validation error estimates are thus conservative in the sense that they were derived from a model fit to 
a dataset one half the size of the final dataset. 
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Table 6.A.1. Predictor variable transformations. 

Predictor transformation notes 
variable exPression 
BATH X*=(1-x)-0.4 For all X ≤ 0
SLOPE X*=X-0.4

DIST X*=X0.6

SSDIST X*=X Not transformed
     SST X*=11605/(X+273.15) Arrhenius trans-

form (Laidler, 1997) 
    STRT X*=X Not transformed 

TUR X*=1/X
     CHL X*=1/(X+1)

ZOO X*=X Not transformed 
  SLPSLP X*=X-0.3

PHIM X*=1/(X+3) 
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The trend component of the Stage I model, µ I
i   (x,y), was estimated as follows.

Observed data Zi(x,y) were first 
transformed to a binary indicator variable 
Pi(x,y), whose value was 1 if Zi(x,y)>0 
and 0 otherwise. The initial set of 11 
potential predictor variables was then 
pre-screened to remove any predictors 
whose pattern of missing values would 
too greatly influence the data points 
that could be used to estimate the GLM. 
Pre-screening criteria are given in Table 
6.A.2.

Predictor variables not excluded in the pre-screening process were centered, standardized, and the R package 
‘glmulti’ (Calcagno and Mazancourt, 2010; Calcagno, 2011) was used to search for the model with lowest 
AICc from the set of possible generalized linear models, allowing two-way interaction effects to be included, 
but requiring that both corresponding main effects be in the model if an interaction term were to be included 
(marginality requirement). GLM model used a binomial distribution with a logit link function (Fox, 2008).

The search method used depended on the size of the possible model space, which was restricted by the 
elimination of some potential predictors in the pre-screening stage (above) and by an upper bound on the 
number of terms determined by the number of observations. The number of terms in a model (not including 
the intercept) was restricted to be no greater than the number of observations divided by 10 (Sokal and Rohlf, 
1995; Fox, 2008). If the number of predictors and/or maximum number of terms was sufficiently small, then the 
model space was searched exhaustively for the model with the lowest corrected Akaike’s Information Criterion 
(AICc; Sokal and Rohlf, 1995). If the number of predictors and/or maximum number of terms was intermediate, 
then a genetic algorithm with the default parameters and stopping criteria of deltaM=0.5, conseq=5 was used 
(Calcagno and Mazancourt, 2010; Calcagno, 2011). If the number of predictors and/or maximum number of 
terms was too large for the genetic algorithm to enumerate the model space, then an exhaustive search was 
performed of all possible models with 5 or fewer main effects (allowing for two-way interactions within each 
subset).

The selected model structure was then fit to the data using Matlab Statistics Toolbox function ‘glmfit’, which 
implements standard Generalized Linear Model fitting by iteratively re-weighted least-squares (Bjorck, 1996; 
Fox, 2008). As before, a binomial distribution and logit link function were used. Use of binomial distributions 
and logit link functions involves assumptions that are discussed in Section 6.A.14. Parametric ± 1 standard 
error confidence bounds on GLM estimates were calculated using Matlab function ‘glmval’ (following equations 
in Fox, 2008).  

A standard array of GLM diagnostics was produced, including effect tests, deviance goodness-of-fit tests, 
several ‘pseudo-R2’ measures designed for logistic regression, residual leverage and influence plots, and a 
variety of other diagnostic measures (for details see diagnostic tables in main text and Online Supplement 6.2). 
An ROC curve analysis was also performed to assess accuracy of the Stage I trend prediction (see Online 
Supplement 6.2).

6.A.5. Stage I residual model
The residual component of the Stage I model, ε I

i   (x,y), was estimated as follows.
 
First, ROC curve analysis was used to determine the optimal cutoff value of the trend probability, µ I

i   (x,y), 
to use for classifying the presence/absence data (Cardillo, 2008). ROC curve analysis identifies the cutoff 
probability for classification that optimizes the tradeoff between sensitivity and specificity, given a training 
dataset. This cutoff was then applied to transform the trend prediction map µ I

i   (x,y)  into a binary classification 

Table 6.A.2. Criteria for inclusion of a predictor variable in the set of potential 
predictors evaluated for a given seasonal Stage I or Stage II GLM model (“pre-
screening criteria”).  The set of points for which both data and predictor values were 
available had to meet all of these criteria for a predictor variable to be considered.
criterion condition
Fraction of all data eliminated ≤ 30%
Fraction of presences eliminated ≤ 20%
Fraction of absences eliminated ≤ 50%
Number of presences remaining ≥ 15



map (0=predicted absence, 1=predicted presence). Use of this ROC curve method to classify the trend can 
result in global bias of the classification toward the less-common class (usually presences), and the implications 
of this are discussed in Section 6.A.14. 

A  binary indicator variable (the “misclassification indicator”) was then created that took the value 1 if the binary 
classification map based on the trend was correct at a data location, and 0 if not. Indicator variograms were 
estimated and modeled from this misclassification indicator, and Ordinary Indicator Kriging (OIK) was used 
to produce a map of predicted misclassification probabilities. Kriging predictions >1 or <0 were set to 1 or 0, 
respectively, to satisfy order relations for probabilities (Deutsch and Journel, 1998; Pebesma, 1998), and the 
resulting map was the residual component of Stage I, ε I 

i   (x,y). Because misclassification of 0’s as 1’s and 1’s 
as 0’s were considered equivalent, the OIK geostatistical model makes the assumption that the spatial patterns 
of misclassification of 1’s and 0’s are equivalent (symmetry). Implications of this symmetry assumption are 
discussed in Section 6.A.14. 

Variogram models were fit automatically by a non-linear weighted least-squares minimization algorithm 
(Pebesma, 1998; Pardo-Igúzquiza, 1999), using weights proportional to N/h2  (the number of pairs of 
observations used to estimate each observation divided by the square of the lag distance), as described 
by Pebesma (1998). Following standard geostatistical practice, the functional form of the variogram and an 
initial-guess parameter set was specified prior to the least-squares minimization by inspection of the empirical 
variogram (Issaks and Srivistava, 1989; Cressie, 1993; Deutsch and Journel, 1998; Chiles and Delfiner, 1999).  

OIK produces  parametric estimates of uncertainty (kriging standard error) for each location in the residual 
prediction map (Pebesma, 1998; Deutsch and Journel, 1998). An ROC curve analysis was also performed to 
assess accuracy of the Stage I residual prediction (see Online Supplement 6.2). 

6.A.6. Final Stage I model 
Because the trend and residual components of the Stage I model are probabilities, they can be combined 
using the laws of conditional probability to arrive at the full Stage I model as follows (Ross, 2007): 

pi (x,y) = Prob([trend model predicts i is present AND trend model is not wrong] OR    Eq. 5
    [trend model predicts i is not present AND trend model is wrong]) 

which can be translated to, 

p I I I I 
i (x,y) = µi  (x,y) · (1- εi  (x,y)) + (1- µi   (x,y)) · εi  (x,y)   Eq. 6

which simplifies to the final Stage I model: 

p  (x,y) = µ I I I I
i i  (x,y) + εi   (x,y) - 2 · µi  (x,y) · εi   (x,y)   Eq. 7

Parametric ± 1SE confidence intervals for the final Stage I model, pi(x,y), were derived by applying Equation 
7 to the parametric confidence intervals for µ I 

i   (x,y) and ε I
i   (x,y)  calculated using the GLM model and the 

geostatistical (OIK) model, respectively. 

6.A.7. Stage II trend model 
The trend component of the Stage II model, µ II 

i   (x,y), was estimated as follows. 

Data at non-zero locations were first transformed for normality using a Box-Cox power transform (see Section 
6.A.2.) whose parameter λ  was chosen by a maximum likelihood procedure (Figure 6.A.1) (Box and Cox, 1964; 
Dror, 2006). Power-law family models have recently been found to outperform other often-used statistical 
models (e.g., Poisson) for describing distributions of seabird group sizes in our study region (Beauchamp, 
2011), lending further motivation to the use of the Box-Cox family of transformations for this purpose. 

The initial set of 11 potential predictor variables was then pre-screened to remove any predictors whose 
pattern of missing values would too greatly influence the data points that could be used to estimate the GLM. 
Pre-screening criteria are given in Table 6.A.2. 
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The predictor variables were 
centered, standardized, and the R 
package ‘glmulti’  (Calcagno and 
Mazancourt, 2010; Calcagno, 2011) 
was used to search for the model 
with lowest AICc in the same way 
described for Stage I (Section 6.A.4.), 
except that in this case the GLM 
model used a normal distribution with 
an identity link function (Fox, 2008). 

The selected model structure was 
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then fit to the data using Mat
Statistics Toolbox function ‘glm
which implements stand
Generalized Linear Model fitt
by iteratively re-weighted lea
squares (Bjorck, 1996; Fox, 200
A normal distribution and iden	
link function were used. Use of 
normal distribution here involv
assumptions that are discuss
in Section 6.A.14. Parametric ±
standard error uncertainty bounds
GLM estimates were calculated us
Matlab function ‘glmval’  (follow
equations in Fox, 2008). 

Because spatial autocorrelat
biases the estimation of G
parameters, we followed an iterat
procedure to fit the final GLM
gstat (Pebesma, 1998; Chiles a
Delfiner,1999).  

1.  Calculate residuals a
estimate residual variogr
(see Section 6.8.). 

2.  Re-calculate fit with gstat, 
using residual variogram 

3.  Re-calculate 	 residuals  and 
repeat fitting with gstat (steps 2 
and 3) until residual variogram 
has converged (determined  by 
inspection). 

a)

b)

Figure 6.A.1 Box-Cox transformation of non-zero relative abundance (SPUE) data. 
Example for Dovekie in Winter. (a) selection by maximum likelihood procedure. (b) 
normal probability plots and histograms before and after transformation. 

A  standard array of GLM diagnostics was produced, including effect tests, goodness-of-fit F tests, R2 and 
several ‘pseudo-R2’  measures to allow comparison with the Stage I logistic regression, residual leverage and 
influence plots, and a variety of other diagnostic measures (for details, see diagnostic tables in main text and 
Online Supplement 6.2). 



 

 

 

 

 
     

 

  
  

     

 

6.A.8. Stage II residual model 
The residual component of the Stage II model, εi

II (x,y), was estimated as follows. 

First, residuals from the trend model fit were calculated by subtracting the observed values from predicted values. 
Residuals were calculated in Box-Cox transformed space to satisfy normality assumptions of geostatistical 
methods. Residual variograms were then estimated and modeled using gstat, and Simple Kriging (SK) was 
used to produce a map of predicted residuals. The resulting map was the residual component of Stage II, εi

II 

(x,y). 

Variogram models were fit automatically by a non-linear weighted least-squares minimization algorithm 
(Pebesma, 1998; Pardo-Igúzquiza, 1999), using weights proportional to N/h2 (the number of pairs of 
observations used to estimate each observation divided by the square of the lag distance), as described 
by Pebesma (1998). Following standard geostatistical practice, the functional form of the variogram and an 
initial-guess parameter set was specified prior to the least-squares minimization by inspection of the empirical 
variogram (Issaks and Srivistava, 1989; Cressie, 1993; Deutsch and Journel, 1998; Chiles and Delfiner, 1999). 

SK was also used to produce parametric estimates of uncertainty (kriging standard error) for each location in 
the residual prediction map (Pebesma, 1998; Deutsch and Journel, 1998). 

6.A.9. Final Stage II model 
In Box-Cox transformed space, the final Stage II model is simply the sum of trend and residual components: 

Transformed (x,y) | P II IIE{Z (x,y)=1} = µ  (x,y) + ε  (x,y) Eq. 8i i i i 

The result can be back-transformed to yield a prediction in the original units of SPUE: 

                       
           

Back-transforms were constrained to lie between 0 and 110% of the observed data ma

Parametric ± 1SE confidence intervals for the final back-transformed Stage II model,
were derived by applying Equations 8 and 9 to the parametric confidence intervals fo
calculated using the GLM model and the geostatistical (SK) model, respectively. 

6.A.10. Final Stage I x II model 
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Eq.  9  

ximum. 

 E{ Zi(x,y) | Pi(x,y)=1}, 
r µi

II  (x,y) and εi
II  (x,y) 

Stage I and Stage II models were combined as described in Section 6.A.1. (Equation 3) to produce each 
seasonal predictive map of the unconditional expected value of SPUE, which we will refer to as the “Stage I 
x II” prediction map or E{Zi(x,y)}. Specifically, E{Zi(x,y)} is equal to the product of Equation 9 (the final back-
transformed Stage II prediction) and Equation 7 (the final Stage I model prediction). Note that the Stage I x II 
predictions are in back-transformed units (SPUE). 

Parametric uncertainty bounds (± 1SE) for the final Stage I x II maps were obtained by plugging the confidence 
I I II IIintervals for µ  (x,y), ε  (x,y), µ  (x,y), and ε  (x,y) described above into equations 7 and 9 and multiplying i i i i 

equation 7 by equation 9 for each set of uncertainty bounds. 

6.A.11. Relative uncertainty calculations 
In order to simplify comparison of uncertainties among different model components, uncertainties were 
converted to relative values that fall between 0 and 1, with 0 representing low uncertainty (high certainty) 
and 1 representing high uncertainty (low certainty). To further aid in interpretation, relative certainty classes 
were defined as follows: high certainty class (relative uncertainty ≤0.5), medium certainty class (0.5<relative 
uncertainty≤0.65), and low certainty class (relative uncertainty>0.65). The implications of a particular relative 
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uncertainty value or certainty class for model performance can be determined by examining the diagnostic 
tables in the main text, which give cross-validation error statistics for each certainty class, and the cross-
validation relative uncertainty calibration plots in Appendix 6.C. (described in Section 6.A.12. below). 

6.A.11.1. Stage I 
The relative uncertainty of Stage I model predictions is expressed as the scaled negative log (odds ratio), 
SNLOR. The negative log odds ratio, NLOR, is the negative natural logarithm of the ratio of the odds of 
correct binary classification (absence= 0, presence= 1) using the Stage I model to the odds of correct binary 
classification under a null model: 

OddsmodelNLOR = − ln( ) Eq. 10

Oddsnull
 

To calculate the odds of correct classification under the Stage I model, Oddsmodel, we first consider uncertainty 
of the Stage I model prediction relative to the cutoff probability c used for binary classification (in this case, 
the optimal cutoff probability determined by ROC curve analysis). The uncertainty around the Stage I model 
prediction p can be modeled by a normal curve on the logit scale, with mean equal to the Stage I prediction 
and standard deviation equal to the larger of the upper and lower 1SE confidence intervals: 

zp~ N(logit[p], max(logit[p+1SE] - logit[p], logit[p] - logit[p-1SE])). Eq. 11 

Then the probability of the true predicted value lying above the cutoff probability c is given by 

= Prob(z > logit (c)), Eq. 12pabove p 

and the probability of the true predicted value falling below the cutoff probability is 

= Prob(z < logit (c)). Eq. 13pbelow p 

The classifier itself is subject to error, which we estimate by its performance in cross-validation: the true posi-
tive (p̂TP), true negative (p̂TN), false positive (p̂FP), and false negative (p̂FN), rates of the classifier from the cross-
validation confusion matrix at cutoff value c. The odds of correct classification using the Stage I model can 
then be calculated as: 

Oddsmax Oddsmodel modelln( ) − ln( )
Oddsnull Oddsnull Eq. 14SNLOR = max minOdds Oddsmodel modelln( ) − ln( )
Odds Oddsnull null 

To calculate the odds of correct classification under a null model, Oddsnull, we consider a null model in which the 
true and predicted presence/absence (1/0) states are given by Bernoulli random variables with probabilities p1 
(equal to the global prevalence of the species) and c (equal to the optimal cutoff probability from ROC curve 
analysis), respectively. Then the null odds of correct classification are:  

p ⋅ p̂ + p ⋅ p̂above TP below TNOdds = .model Eq. 15
pabove ⋅ p̂ FP + pbelow ⋅ p̂ FN
 

For a given set of cross-validation error rates (p̂ p̂FP , and p̂ ,TP, p̂TN FN), the minimum and maximum possible values 
of the NLOR are: 

(1− p ) ⋅ c + p ⋅ (1− c)
= 1 1 Eq. 16Oddsnull (1− p1) ⋅ (1− c) + p1 ⋅ c 
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The scaled NLOR, SNLOR, is calculated so that SNLOR=0 at the mi
SNLOR=1 at the maximum possible value of the NLOR:  

Eq

   
  
Values of SNLOR  closer to 0 indicate model predictions that have rel
pared to a null model (high certainty), whereas values closer to 1 indica
low odds of being correct compared to a null model (low certainty). 
this way for the Stage I trend, Stage I residual, and the final Stage I 

nimum possible value of the NLOR  and 

. 17
	

atively high odds of being correct com-
te model predictions that have relatively 

Relative uncertainties were calculated in 
model, using the cross-validation ROC 

curve cutoff c  and cross-validation error rates (p̂   TP, p̂           TN , p̂     FP , and p̂    FN) determined from the ROC analysis of trend, 
residual, and final Stage I predictions, respectively. Below, the final Stage I relative uncertainty is denoted σ I,rel  
(x,y), and is equal to the value of SNLOR for the final Stage I model for species/group i at location (x,y). 

6.A.11.2. Stage II 
Relative uncertainty of Stage II trend, residual, and final model predictions were calculated as the ratio 
of prediction variances to the appropriate error variance (trend prediction variance: total sample variance 
minus residual variogram sill; residual variance: residual variogram sill; final prediction variance: total sample 
variance). Below, the final Stage II relative uncertainty is denoted σ II,rel (x,y). 

6.A.11.3. Stage IxII 
The relative uncertainty of final Stage IxII model predictions was calculated by combining the relative 
uncertainties of final Stage I and Stage II models as follows: 
   
σ IxII,rel II,rel I,rel

i  (x,y) = pi (x,y) · [σi  (x,y)] +(1− pi (x,y) · σi (x,y)     Eq. 18

The rationale behind equation 18 is that the Stage II relative uncertainty applies if the species is present (which 
is true with probability pi(x,y)), whereas the Stage I relative uncertainty applies if the species is absent (which 
is true with probability [1- pi(x,y)]). 

6.A.12. Model evaluation and uncertainty calibration 
In addition to the standard GLM effect tests and diagnostics, model predictive performance was evaluated 
in and out of the training set using a variety of error statistics, error plots and ROC curve analysis. As a final 
summary of model performance in cross-validation and aid to the reader in interpreting relative uncertainty 
values for the final Stage IxII model, an uncertainty calibration plot was produced. For each location in the 
holdout set, the model developed from training data was used to predict the value at that location, and the 
magnitude of the difference between actual and predicted values (absolute error) was plotted versus the Stage 
I x II relative uncertainty value (Appendix 6.C.). Robust linear loess smoothing lines (Burkey, 2009) are plotted 
to show how actual out-of-set average prediction errors relate to parametric relative uncertainty estimates. 
Separate lines are plotted for overall error, and error when the species or group was present (since most 
species are relatively rare in any given survey, presences are harder to predict than absences). Similar relative 
uncertainty calibration plots are produced for Stage I predictions (presence/absence). 
 
Uncertainty calibration plots, ROC analyses, error statistics, and other model evaluation diagnostics are 
included in the diagnostic tables in the main report, in Appendix 6.C., and in Online Supplement 6.2. 

6.A.13. Combination of seasonal climatological maps to produce annual climatological maps 
For each species and species group i, seasona
combined to produce annual maps as follows: 

      

l maps of climatological SPUE (Stage IxII predictions) were 

 Eq.19  
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Using the laws of probability and the expectation operator (Ross, 2007), this procedure can be shown to 
yield an unbiased estimate of the SPUE prediction for the entire year, given that (1) each seasonal model 
prediction is the unconditional expected value of SPUE, Zi(x,y), and, (2) the seasons are defined as non-
overlapping and together cover the entire climatological year. These two conditions are true by definition. 

Annual integrated presence probability maps were produced by combining the seasonal climatological presence 
probability predictions (Stage I predictions), assuming statistical independence of the seasonal probabilities. 

Given 4 seasons, there are 15 possible ways in which a species or group can be present in at least one season. 

Represented as four digit binary codes, these are: 1000, 0100, 0010, 0001, 1100, 1010, 1001, 0110, 0011, 

0101, 1110, 1011, 1101, 0111, 1111. The probabilities of each of these outcomes was summed to produce the 

annual integrated presence probability, 

pi(x,y)annual, which is equivalent to the annual climatological site occupancy probability for species/group i  each 

location (x,y).
 

To estimate the relative uncertainty associated with each annual map, the weighted average of the corresponding
	 
seasonal relative uncertainty maps was calculated, using the frequencies of occurrence of the species in each
	 
season as weights. For the annual SPUE map the relative uncertainty is given by:
	

          
   Eq. 20 
    

For the annual integrated presence probability map relative uncertainty, the relative uncertainty is given by:
	

   Eq. 21
	

It can be shown that these relative uncertainties are monotonically related to the variance of the annual 
prediction error, but this relationship will not necessarily be linear for two reasons (Ross, 2007): 

1. The relative uncertainty of Stage I predictions is based on a log-odds ratio, and, 

2. Seasonal estimates of Zi(x,y) may not be uncorrelated, and therefore summation of variances, unlike 
summation of expected values, is not necessarily a linear operator. 

Thus we rely on uncertainty calibration plots (plots of cross-validation error vs. relative uncertainty, Section 
6.A.12.) to interpret the precise meaning of the relative uncertainty value for each species/group annual model. 

6.A.14. Summary and implications of model assumptions 
The seasonal  predictive modeling approach described above makes a number of assumptions. To the extent 
these assumptions are violated, accuracy of predictions and uncertainty estimates may suffer. In this section 
we briefly review the major assumptions and their implications. The degree to which violations of model 
assumptions affect the performance of any given seasonal model can be assessed by considering the cross-
validation performance statistics described in 6.A.12 and reported in the main text diagnostic tables, Appendix 
6.C, and Online Supplement 6.2. 

important general assumptions:  
•  Stationarity of pattern over time within seasons and among years 
  Statistically, stationarity in this context means that the region-wide mean, variance, and spatial structure 

of abundance and occurrence patterns do not change over the time period we studied. Ecologically, 
stationarity implies that the ecosystem has not undergone any fundamental shifts in patterns and 
processes (e.g., climate trends, ocean climate regime shifts, introduced species, changes in patterns 



of human activities like fishing).  If this assumption is violated, temporal variation will show up as non-
spatially structured error (“white noise”) in the model result. Model parameters and predictions may also 
be biased (cross-validation  errors will not be centered at 0). The predicted spatial pattern may be an 
amalgam of different patterns that occurred at different time periods (e.g., “smearing” of hotspots that 
moved from year to year). If there are major changes in the underlying processes, the model will also be 
less generalizable to other time periods. 

•  Stationarity of environmental predictor climatologies   
  The use of long-term climatologies of time-varying environmental predictors (such as SST  and 

stratification), assumes that the long-term seasonal mean spatial patterns of these variables have not 
changed over time. Major changes in the underlying environmental patterns and processes will make the 
model less generalizable to other time periods. 

•  Unbiased year-to-year sampling (no temporal effect included) 
  If the sampling pattern is non-random within seasons and/or across years, GLM parameter estimates 

and parametric uncertainties could be biased and inaccurate. This problem will be exacerbated if the 
assumptions of temporal stationarity of predictors and response are also violated. The Manomet survey 
was conducted on ships of opportunity, so samples were not random in space or time; therefore some 
biases due to unbalanced effort are expected. 

•  Perfect detectability; freedom from other kinds of sample bias 
  To the extent that a given species or species group is not perfectly detectable by the sampling protocol, 

relative occurrence and abundance indices will be biased compared to true abundance and occurrence 
values. Predictions from this model should be considered relative, rather than absolute, estimates of 
occurrence and abundance. In addition to detectability, similar biases can result from attraction of certain 
species to the survey platform (boats). Finally, systematic study biases may exist in the types of species 
that were recorded. For example, we found very few records of passerines in the Manomet dataset, even 
though there is evidence of offshore sightings of these species from other sources. These and other 
birds that are rare but not absent in the offshore may require other survey and modeling approaches if 
they are of conservation concern. 

• 	 Constant relationship between sampling effort, relative indices of occurrence and abundance, and true 
values of occurrence and abundance 

  Not only are species unlikely to be perfectly detectable, the relationship between our relative indices of 
occurrence and abundance and the true values of occurrence and abundance could vary in time and 
space, depending on differences in observers, weather conditions, animal behavior, etc. Such variation 
introduces an un-accounted for source of measurement error into data. 

important stage i assumptions 
•  Binomial distribution and logit link function 
  To the extent that these distributional assumptions are violated, trend predictions may be   

biased and parametric confidence intervals inaccurate. 

• 	 Use of receiver operating characteristic (ROC) curve optimal cutoff analysis to classify residuals from the 
trend model 

  Use of the ROC classifier may introduce bias into the final presence probability estimates at the expense 
of balancing overall sensitivity and specificity. 

•  Symmetry assumption for misclassification probability field 
  Misclassification of absences as presences may not show the same spatial pattern as misclassification 

of presences as absences; if that is the case, then model predictions may be biased and the model 
may perform better for one type of misclassification than for others, even though parametric uncertainty 
estimates are the same. 

important stage ii assumptions  
•  Normality and linearity of Box-Cox transformed predictors and responses in the Stage II trend model 

We assume that the Box-Cox transform in Stage II is sufficient to achieve normality of residual variances 
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and linearity of underlying response-predictor relationships. Since the underlying seabird relative 
abundance data are based on counts (divided by transect area to create a quasi-continuous density 
estimate), this requires that we assume the continuous Box-Cox transformed Gaussian distribution 
used to represent non-zero relative abundance is an adequate approximation to the underlying discrete 
probability distribution. The appropriateness of these assumptions is difficult to test directly and the reader 
should rely on cross-validation performance statistics to judge the extent to which these assumptions 
were approximately correct. 

• Trans-Gaussian assumption in the Stage II residual (geostatistical) model 
Simple Kriging also assumes approximate normality; therefore the adequacy of the Box-Cox transformation 
to achieve normality of the residual distribution is also important to the accuracy of the kriging prediction 
(especially the validity of the kriging variance). 

• Back-transform issues (extrapolation of the CDF tail) 
When back-transforming Stage II predictions, we have arbitrarily cut off the upper end of the distribution 
at 110% of the data maximum, which may not always be appropriate. This is only expected to influence 
the highest predicted values. 

important stage ixii assumptions 
• Separability of abundance and presence/absence patterns 

We have assumed that abundance is conditionally independent of presence/absence (that is, abundance 
can be modeled independently of presence probability). If this assumption is violated, then the Stage IxII 
estimates will be biased. The direction of this bias will depend on the sign of the dependence, and on the 
Box-Cox transformation parameter. The degree of bias in predictions can be assessed (and corrected for) 
by examining cross-validation bias statistics in the diagnostic tables. 

important assumptions of annual maps 
• Seasonal estimates of expected SPUE, Zi(x,y), are uncorrelated with each other. 

If seasonal estimates of SPUE are positively correlated with each other, then the summation of 
unconditional expected values will still be correct but the relationship between actual prediction error and 
the predicted relative uncertainty value will be affected. The cross-validation uncertainty calibration plots 
should be used as a guide to the true relationship between relative uncertainty and prediction error for 
each annual model. 

• Seasonal estimates of presence probability pi(x,y) are independent of each other. 
If presence probabilities are not independent from season to season, then the integrated annual presence 
probability maps will over or underestimate annual site occupancy probability, depending on the sign of 
the dependence. 
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