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A R T I C L E I N F O A B S T R A C T

Article history: Habitat complexity plays a major role in determining the distribution and structure of fish assemblages in the
Received 3 April 2007 aquatic environment. These locations are critical for ecosystem function and have significant implications for
Received in revised form 10 January 2008 conservation and management. In this study, we evaluated the utility of remotely sensed lidar (light
Accepted 12 January 2008 detection and ranging) data for deriving substrate rugosity (a measure of habitat complexity) on a coral reef

in Hawaii. We also assessed the potential application of lidar data for examining the relationship between
Keywords:

habitat complexity and Hawaiian reef fish assemblage characteristics. Lidar-derived rugosity (4 m grid size)Light detection and ranging
was found to be highly correlated with in-situLidar rugosity and was concluded to be a viable method for

Habitat complexity measuring rugosity in analogous coral reef environments. We established that lidar-derived rugosity was a
Rugosity good predictor of fish biomass and demonstrated a strong relationship with several fish assemblage metrics
Coral reef fishes in hard bottom habitat at multiple spatial resolutions. This research demonstrates (i) the efficacy of lidar data
Hawaii to provide substrate rugosity measures at scales commensurate with the resources and their environment

(ii) the applicability of lidar-derived rugosity for examining fish–habitat relationships on a coral reef in
Hawaii and (iii) the potential of lidar to provide information about the seascape structure that can ultimately
be used to prioritize areas for conservation and management.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction high species richness (Gratwicke & Speight, 2005), species diversity
(Almany, 2004) and fish biomass (Friedlander & Parrish, 1998).

Habitat complexity in the coastal environment plays an important There are a number of habitat complexity variables that can be
role in structuring nearshore fish assemblages. The relationship measured in-situ (reviewed in McCormick, 1994), and rugosity is the
between habitat complexity and measures of community structure most commonly used in-situ measure. For the purposes of this study,
was first observed in the terrestrial realm (August, 1983; MacArthur & rugosity, or vertical relief, was used to represent a measure of
MacArthur, 1961; Murdoch et al., 1972; Rosenzweig & Winakur, 1969). structural complexity. The chain transect method measures in-situ
A similar relationship between habitat complexity and fish assem- rugosity by obtaining the ratio of the length of a chain laid across the
blage characteristics has been well documented in both freshwater bottom profile along a transect line to the linear distance of the
(Gorman & Karr, 1978) and marine ecosystems (Caley & St John, 1996; transect line (Friedlander & Parrish, 1998; Luckhurst & Luckhurst,
Friedlander & Parrish, 1998; Gratwicke & Speight, 2005; Luckhurst & 1978; Risk, 1972). A limitation of the traditional chain transect method
Luckhurst, 1978; Risk, 1972; Roberts & Ormond, 1987). is the restriction of the structural complexity measurements to

Structural complexity, a major component of habitat complexity, relatively fine spatial scales. Additionally, field measurements are
can be defined as the architecture of the physical environment (McCoy time-consuming, can have high inter-observer variability, and are
& Bell, 1991; Sebens, 1991). Structurally complex habitats offer more difficult to obtain over a broad geographic area.
potential niches and increase survivorship by providing fish additional Considering the documented importance of the relationship
refuge from predation (Almany, 2004; Beukers & Jones, 1998; Hixon & between rugosity and fish assemblage structure, it is critical to
Beets, 1989). Accordingly, areas of high structural complexity harbor develop faster methods of determining rugosity in the marine

environment at broader geographic extents. The current expansion
and wide application of remote sensing technology on coral reef

⁎ Corresponding author. University of Hawaii at Manoa, Department of Geography, ecosystems were recently reviewed (Mumby et al., 2004). Lidar (Light
2424 Maile Way, Saunders Hall # 445, Honolulu, Hawaii, 96822, United States. Tel.: +1
808 956 3694. detection and ranging) is an active remote sensor that allows for
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Lidar has recently been applied to map coral reef structure (Storlazzi
et al., 2003), and tomeasure reef rugosity (Brock et al., 2004, 2006). Lidar
can provide measurements that may be scaled to allow for extraction of
information at spatial extents that are more appropriate for coral reef
ecosystems and related management actions. Applying remote sensing
techniques that can rapidly identify structurally complex habitat may
greatly assist resource managers in locating areas that are important to
protect and sustain nearshore fish populations.

The goals of this study were (1) to determine whether lidar
technology can provide effective rugosity measures on a coral reef in
Hawaii and (2) to examine the relationship between reef fish
assemblage characteristics and lidar-derived rugosity.

2. Data and methods

2.1. Study area

The study area is located in the Hanauma Bay Marine Life
Conservation District (MLCD) on the south shore of the island of
Oahu, in the Hawaiian Archipelago (Fig. 1). Hanauma Bay MLCD was
designated as the first “no-take” marine protected area (MPA) in
Hawaii in 1967 and encompasses approximately 41 ha. This area
receives over one million visitors per year and is the most visited
MPA in the world (Friedlander et al., in review). The bay was formed
by the collapse of two volcanic craters, with the seaward opening of
the bay most likely the result of wave erosion. There are extensive
coral reef and sandy-bottom habitats throughout the MPA, providing
a wide range of structural complexity and habitat types. Hanauma
Bay represents a unique location to examine the relationship
between a relatively intact fish assemblage and its associated habitat

Fig. 1. Location of the study area, Hanauma Bay Marine Life Conservation District on the
island of Oahu. Hanauma Bay was the first “no-take” marine protected area in Hawaii
designated in 1967, and encompasses approximately 41 ha.

Fig. 2. U.S. Army Corps of Engineers SHOALS lidar data for Hanauma Bay Marine Life
Conservation District (MLCD). MLCD boundary is denoted by the bold black line.

because fishing has been prohibited at this site for approximately
forty years.

2.2. Lidar data

The U.S. Army Corps of Engineers SHOALS (Scanning Hydrographic
Operational Airborne Lidar Survey) system is an airborne lidar bathymeter
utilized to remotely collect topographic and bathymetric measurements
using infrared (1064 nm) and blue-green (532 nm) scanning laser pulses.
SHOALStypicallyoperates at an altitudeof 200mallowing for ahorizontal
spot density of 4 m with a vertical accuracy of ±20 cm and a horizontal
accuracy of ±1.5m (Irish& Lillycrop,1999). Theminimumdepth detection
for the SHOALS sensor is typically less than 1 m, with a maximum
depth detection of approximately 40 m in locations with optimal water
clarity. The SHOALS lidar sensor accuracy and system performance
capabilities have been summarized in detail by several authors (Guenther
et al., 2000; Irish & Lillycrop, 1999; Irish & White, 1998).

SHOALS lidar datawas collected in Hawaii between 1999 and 2000.
A total of 38,743 lidar depthmeasurementswere collected at the study
site, but did not cover the entire bay. The shallow, nearshore areas
with depths of 0.0–1.5 m and portions of the reef crest had data gaps,
most likely due to the SHOALS sensor performance limitations in
shallow water, where wave action and turbidity might have been
present during data collection (Fig. 2).

2.3. Fish assemblage data

Field surveys were conducted at 33 transects in Hanauma Bay
during May 2004 using a stratified random sampling design. The
habitat strata [sand (UCS), colonized (CHB) and uncolonized hard
bottom habitats (UCH)] were based on NOAA's Biogeography Branch
benthic habitat maps (Table 1, Fig. 3) (Coyne et al., 2003). This
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realizations that possess the statistical properties of the sample data
(Dungan, 2002). The DEMs were exported as grid files so that benthic
terrain analysis could be completed in a GIS environment.

3.2. Benthic terrain analysis

Each bathymetric DEM was analyzed using the “Benthic Terrain
Modeler Tool for ArcGIS”, an ArcGIS (ESRI) tool that was created for
spatial analysis of multibeam data sets, and provides a measure of
rugosity from the bathymetric grids (Lunblad, 2004; Lundblad et al.,
2006; Rinehart et al., 2004). This tool has been utilized to create
rugosity maps from bathymetric data to inform marine resource
management efforts in Fangatele Bay National Marine Sanctuary,
American Samoa (Lundblad, 2004; Lundblad et al., 2006; Wright,
2002a,b).

The rugosity at a transect location was derived by obtaining the
ratio of the seascape surface area to the planimetric area in a
neighborhood analysis for all of the grid sizes (Jenness, 2003, 2004;
Lundblad et al., 2006). Transects located in areas that lacked lidar
coverage were not included in any further statistical analysis because
no measure of rugosity could be calculated. As a result, lidar-derived

Table 1
Number of transects performed and total area of each benthic habitat type in Hanauma
Bay

Benthic habitat type Code No. of transects Hectares

Colonized hard bottom CHB 12 20.22
Uncolonized hard bottom UCH 10 7.12
Sand UCS 11 9.77
Total 33 37.11

Habitat types were based on NOAA benthic habitat maps and used for stratified random
sampling of fishes and benthos. (http://ccma.nos.noaa.gov/ecosystems/coralreef/
main8hi_mapping.html).

stratified random sampling methodology has been used in other coral
reef fish studies (Appeldoorn et al., 2003; Christensen et al., 2003;
Friedlander et al., 2003) to guide the sampling design and account for
variation in fish abundance that may be influenced by the benthic
substrate present at the site.

Fish assemblages were assessed using standard underwater visual
belt transect surveymethods (Brock,1954,1982). A diver swam a 25 by
5 m transect at a constant speed and identified to the lowest possible
taxon all fishes visible within 2.5 m to either side of the centerline
(125 m2 transect area). Total length of fish was estimated to the
nearest centimeter.

2.4. In-situ rugosity

Rugosity was measured using a brass chain (1.3 cm per link) that
was draped along the profile of the centerline of each 25 m transect
(Friedlander & Parrish,1998; Risk, 1972). Care was taken to ensure that
the chain followed the profile of all natural fixed surfaces directly
below the transect centerline. The ratio of length of the chain draped
across the bottom profile to the linear distance of the transect line
gave an index of rugosity.

3. Data analysis

3.1. Lidar data processing

Digital elevation models (DEMs) are commonly produced from
lidar data in order to calculate habitat structural complexity (Knudby
et al., 2007). DEMs of Hanauma Bay were created at four grid cell sizes
(4,10,15 and 25m grids) from the lidar data using GS+ (GammaDesign
Software). Conditional simulation was used to create the digital
elevation models. Conditional simulation is a geostatistical method
that assumes spatial autocorrelation of the data and creates random

rugosity values were obtained for twenty-two transects. The correla-
tion between the lidar-derived rugosity (4, 10, 15 and 25 m grids) and
in-situ rugosity was tested using the nonparametric Spearman Rho
correlation coefficient (Siegel & Castellan, 1988).

3.3. Association between rugosity and fish assemblages

3.3.1. Fish assemblage characteristics
Numerical abundance, species richness, species diversity, and

biomass were calculated to characterize the fish assemblage.
Numerical abundance represented the total number of fishes on
transects. Species richness was based on the total number of fish
species documented on each transect. Species diversity was calculated
from the Shannon–Weaver Diversity Index (Ludwig & Reynolds,
1988): H' H′=S (pi ln pi), where pi is the proportion of all individuals
counted that were of species i. Length estimates of fishes from visual
censuses were converted toweight using the following length–weight
conversion: W=aSLb, where the parameters a and b are constants for
the allometric growth equation and SL is standard length in
millimeters and W is weight in grams. Total length was converted to
standard length by multiplying standard length to total length-fitting
parameters obtained from FishBase (www.fishbase.org). Length–
weight fitting parameters were available for 150 species commonly
observed on visual fish transects in Hawaii (Hawaii Cooperative
Fishery Research Unit unpublished data). This was supplemented with
information from other published andweb-based sources. In the cases
where length–weight information did not exist for a given species, the
parameters from similar bodied congeners were used. All biomass
estimates were converted to metric tons per hectare (t ha−1) to
facilitate comparisons with other studies in Hawaii.

Fig. 3. NOAA benthic habitat map and transect locations in Hanauma Bay Marine Life
Conservation District. The benthic habitat map was created using a minimum mapping
unit of 0.4 ha.
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3.3.2. Relationship between in-situ rugosity and fish assemblages
In-situ rugosity did not conform to the assumptions of normality

despite transformation, so the correlations between measures of the
fish assemblage (numerical abundance, richness, diversity and
biomass) and in-situ rugosity were therefore tested using the
nonparametric Spearman Rho correlation coefficient (Siegel &
Castellan, 1988).

3.3.3. Relationships between lidar-derived rugosity and fish assemblages
The association between fish assemblage characteristics and

rugosity was first analyzed within habitats (UCS, UCH, CHB), with
data from all transects pooled. Biomass was ln(x+1) transformed prior
to regression analysis to conform to the assumptions of normality and
homogeneity of variance (Zar, 1999). A least-squares simple linear
regression was utilized to evaluate the relationship between fish
biomass (t ha−1) and lidar-derived rugosity at multiple spatial
resolutions. No other fish assemblage characteristics (numerical
abundance, richness, diversity) conformed to the assumptions of
normality despite transformation.

3.3.4. Associations between lidar-derived rugosity and fish assemblages
in hard and soft bottom habitats

The relationship between fish assemblage characteristics and
rugosity was analyzed by hard and soft bottom habitats. We did this
to ensure that the difference in habitat alone was not inducing a
relationship between lidar-derived rugosity and fish assemblage
characteristics. The major habitat types used in this analysis were
hard bottom (UCH, CHB) and sand (UCS). The UCH and CHB habitats
were combined into hard bottom because the UCH habitat had a
sample size of three and these habitats were structurally similar
(Friedlander et al., 2006). When the fish data were broken down by
two major habitat types, it did not conform to the assumptions of
normality despite transformation. So all fish assemblage data

Fig. 4. Bathymetric map of Hanauma Bay created from SHOALS lidar data. Bathymetric
grid was produced using the geostatistical method of conditional simulation.

Fig. 5. Rugosity index map created from bathymetric grid using the benthic terrain
modeler. Lidar-derived rugosity was calculated by obtaining the ratio of seascape
surface area to the planimetric area in a neighborhood analysis.

(numerical abundance, richness, diversity, and biomass) were ana-
lyzed using the nonparametric Spearman Rho correlation coefficient
(Siegel & Castellan, 1988) to examine the association between
measures of the fish assemblage and lidar-derived rugosity by hard
bottom and sand habitat.

4. Results

4.1. Benthic terrain analysis

Bathymetric grids were created at four spatial resolutions from the
lidar data (Fig. 4) and rugosity values were derived from the rugosity
index maps for each grid size (Fig. 5). The result of the Spearman rank
correlations demonstrated that the lidar-derived rugosity at the 4 m
grid size had a significant positive association (r=0.61, Pb0.01) with
the in-situ rugosity, but the 10, 15, and 25 m grid sizes did not show
statistically significant associations (Table 2).

4.2. Association between rugosity and fish assemblages

4.2.1. Relationship between in-situ rugosity and fish assemblages
In-situ rugosity demonstrated strong positive correlations with

abundance (r=0.70, Pb0.001), diversity (r=0.73, Pb0.001), richness
(r=0.73, Pb0.001), and biomass (r=0.49, Pb0.05) (Table 3).

Table 2
Correlation between in-situ chain rugosity and lidar-derived rugosity at multiple grid
sizes (m)

Grid size 4 m 10 m 15 m 25 m

0.61 (b0.01) −0.01 (0.98) −0.12 (0.60) −0.09 (0.70)

Values denote Spearman rank correlation coefficient with P-values in parenthesis.
Statistically significant correlations (Pb0.05) are shown in bold.
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4.2.2. Relationships between lidar-derived rugosity and fish assemblages
Results of least-squares linear regression demonstrated that lidar-

derived rugosity was a statistically significant predictor of fish
biomass at all grid sizes (Table 4). The lidar-derived rugosity at the
4 m grid size demonstrated the highest R2 value (R2=0.64, Pb0.001),
followed by the 10 m grid (R2=0.46, Pb0.001), 15 m grid (R2=0.40,
Pb0.01), and 25 m grid (R2=0.39, Pb0.01).

4.2.3. Associations between lidar-derived rugosity and fish assemblages
in hard and soft bottom habitats

Lidar-derived rugosity demonstrated the strongest positive corre-
lation with numerical abundance at the 25 m grid size (r=0.73,
Pb0.01) followed by the 4 m grid (r=0.68, Pb0.01), 15 m grid (r=0.67,
Pb0.01), and 10 m grid (r=0.58, Pb0.05) (Table 5). Species richness
had a strong positive correlation with lidar-derived rugosity at the
25 m grid size (r=0.66, Pb0.01), 10 m grid (r=0.65, Pb0.01), 4 m grid
(r=0.64, Pb0.05), and the 15 m grid size was not statistically
significant (r=0.51, P=P =0.06), but suggestive of a relationship. Fish
biomass also demonstrated the strongest positive correlation with
lidar-derived rugosity at the 25 m grid size (r=0.65, Pb0.05), followed
by the 15 m grid (r=0.61, Pb0.05). The fish biomass relationships with
the 4 m grid (r=0.52, P=P =0.06) and 10 m grid (r=0.50, P=0.07) were
not statistically significant. Species diversity was not significantly
correlated with lidar-derived rugosity at any grid size (PN0.05 for all).

In the sand sites, the Spearman rank correlation showed a significant
negative correlation between numerical abundance and lidar-derived
rugosity at the 25 m grid size (r=−0.69, Pb0.05). The relationships
between all other measures of the fish assemblage and the 4, 10, 15 and
25 m grid sizes in the sand sites were not statistically significant.

5. Discussion

5.1. The utility of lidar to provide effective rugosity measures on a coral
reef in Hawaii

Lidar-derived rugosity (4 m grid size) was found to be highly
correlated with in-situ rugosity and represents a viable method for
measuring rugosity in analogous coral reef environments. The lidar-
derived rugosity in our study represented an area-based measure-
ment, and the chain method used in-situwas a linear measurement of
habitat complexity. Despite the fact that these two methods used in
our study were measuring habitat complexity using different

approaches, the results demonstrated a strong relationship and
support the findings of several previous studies. For instance, earlier
work by Luckhurst and Luckhurst (1978) concluded that their in-situ
area-based measurements were highly correlated to linear measure-
ments of habitat complexity. A strong relationship between in-situ
area-based and linear measurements of habitat complexity has also
been documented by Friedlander and Parrish (1998). Further, Kuffner
et al. (2007) applied an area-based measure of rugosity to a lidar-
derived DEM and found this to be significantly correlated to the in-situ
linear measure of rugosity obtained using the chain method.

The in-situ chainmethod is limited to relatively fine spatial scales but
coral reefs demonstrate habitat complexity at a range of spatial scales
(Hatcher,1997), fromcentimeters to kilometers. In-situ rugositywasonly
significantly correlated with lidar-derived rugosity at the 4 m grid, and
this may be a result of the fine spatial scale, and smaller geographic
extent, that was represented by the 4mDEM. The lidar-derived rugosity
was calculated from theDEM in theGIS environment for a single grid cell
by using the values of the 8 surrounding grid cells. As a result, the 4 m
grid size DEM represented an extent of 144 m2 for the rugosity analysis.
In contrast, the 25mgrid sizeDEMrepresented amuchbroader extent of
5625m2. The lidar-derived rugosity, calculatedat the10,15 and25mgrid
sizes, was representing coral reef complexity at a broader geographic
extent that did not correlate with the complexity measures obtained at
the fine spatial scale and small geographic extent of the chain method.

Although the lidar-derived rugosity measured at broader spatial
scales (10, 15 or 25 m grid size) did not have a significant relationship
with in-situ rugosity, these measures of habitat complexity represent
relevant information for reef fish studies using a landscape ecology
approach. Landscape ecology commonly focuses on the ecological
effects (i.e. species distribution, movement and persistence) of spatial
pattern in the landscape at broad geographic extents (Turner, 1989).
Therefore, lidar-derived rugosity (10, 15 or 25 m grid size) may not be
an appropriate alternative to the chain method at these resolutions,
but has the potential to be applied for the purpose of studying fish–
habitat relationships at broad geographic extents that are more
relevant to resource management actions.

Measurements derived from in-situmethods are limited by SCUBA
diving time and depth constraints, as well as shoreline and boat access
to study sites. Lidar has potential as an improved method for
determining habitat complexity because it can provide relevant
information about the coastal habitat across a broad geographic area
in a minimal amount of time. However, there are a number of
deployment issues that may be involved including the remoteness of
the study site and the cost associated with the proximity to areas of
interest. When considering the use of this type of remotely sensed
data for research and management purposes the cost to collect and
process lidar data should be taken into account.

5.2. Relationship between lidar-derived rugosity and reef fish assemblage
structure

A number of authors have established that in-situ rugosity plays an
important role in structuring fish assemblages (Friedlander & Parrish,
1998; Gratwicke & Speight, 2005; Luckhurst & Luckhurst, 1978; Risk,
1972; Roberts & Ormond, 1987). Our results clearly show that rugosity,

Table 3
Correlation between in-situ rugosity and fish assemblage characteristics

Numerical abundance Species diversity (H′) Species richness Biomass (t ha−1)

0.70 (b0.001) 0.73 (b0.001) 0.73 (b0.001) 0.49 (b0.05)

Values denote Spearman rank correlation coefficient with P-values in parenthesis.
Statistically significant correlations (Pb0.05) are shown in bold.

Table 4
Results of simple linear regression analysis with lidar-derived rugosity (4, 10, 15 and
25 m grid sizes) as the independent variable and fish biomass (t ha−1) as the dependent
variable

Regression statistics 4 m 10 m 15 m 25 m

Model: y=bx+a

b±SE 14.988
(2.497)

41.380
(9.994)

49.645
(13.674)

67.761
(19.115)

(PN |t|) b0.001 b0.001 b0.01) b0.01
a±SE −14.779

(2.531)
−41.212
(10.054)

−49.492
(13.746)

−67.609
(19.188)

(PN |t|) b0.001 b0.001 b0.01 b0.01
R2 0.643 0.462 0.397 0.386
Error df 21 21 21 21
Power 0.998 0.950 0.889 0.887

Biomass was ln(x+1) transformed before the analysis.

Table 5
Correlation between lidar-derived rugosity and fish assemblage characteristics in hard
bottom habitat

Grid size 25 m 15 m 10 m 4 m

Numerical abundance 0.73 (b0.01) 0.67 (b0.01) 0.58 (b0.05) 0.68 (b0.01)
Species richness 0.66 (b0.01) 0.51 (0.06) 0.65 (b0.01) 0.64 (b0.05)
Biomass (t ha−1) 0.65 (b0.05) 0.61 (b0.05) 0.50 (0.07) 0.52 (0.06)
Species diversity (H′) 0.41 (0.14) 0.21 (0.45) 0.51 (0.06) 0.41 (0.14)

Values denote Spearman rank correlation coefficient with P-values in parenthesis.
Statistically significant correlations (Pb0.05) are shown in bold.
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measured using awell established fieldmethod, has a strong association
with all measures of the fish community at our study area. This provided
the basis for the evaluation of the relationship between lidar-derived
rugosity andmeasures of fish assemblage structure collected at the same
study area.

Hard bottom sites demonstrated significant associations with
lidar-derived rugosity and numerical abundance (4, 10, 15, 25 m grid),
richness (4, 10, 25 m grid), and biomass (15, 25 m grid). The 25 m grid
cell size (5625 m2) showed the strongest correlation for all three
assemblage metrics we measured. Recent work by Purkis et al. (2008)
also found a strong relationship between satellite-derived habitat
complexity and fish metrics at a similar, broad geographic extent of
5030 m2. It should be noted that both studies were completed in areas
with little to no fishing pressure.

The fish assemblagewithin theMPA boundary at our study sitewas
found to harbor eight times the biomass, and had a much greater
number of large-bodied resource species, compared with adjacent
fished areas (Friedlander et al., 2006, 2007a,b). This is significant
because large-bodied fishes often have larger home ranges (Holland
et al., 1993; Meyer et al., 2007) and seek shelter commensurate with
their body size (Friedlander & Parrish, 1998). For instance, the home
range size of the giant trevally (Caranx ignobilis), a highly mobile
predator that can reach a maximum size of 165 cm, ranged on average
from 5 to 9 km, with occasional movements up to 29 km away from
core areas (Lowe et al., 2006; Meyer et al., 2007). In contrast, Meyer
and Holland (2003) studied movement in the bluespine unicornfish
(Naso unicornis), a smaller-bodied surgeonfish (X

―
=47 cm), that

demonstrated daily movement patterns less than 1 km. The exploita-
tion of larger refuge holes and habitat utilization across a broader
geographical extent by fishes in Hanauma Bay may explain why our
study found that fish assemblage organization was responding to
habitat complexity measures at a broad geographic extent (25 m grid
cell size=5625 m2).

When examined alone, regardless of the resolution, sand sites
were not well correlated with fish assemblage characteristics. Sand
habitats often function as corridors between the structurally complex
reef habitats and, as a result, fish transiting these locations are highly
variable and not easily surveyed. In addition, sand habitats show little
to no variability in habitat complexity so it is not surprising that fish
assemblage structure is not correlated. Although lidar had limited
utility in the sand habitats, results have shown the importance of
these corridors as transit pathways among hard bottom habitats or as
important feeding locations (Friedlander et al., 2007a). As a result,
lidar should be integrated with benthic habitat maps to help explain
assemblage structure and habitat use patterns.

We concluded that lidar-derived rugositywas a goodpredictor offish
biomass inHanaumaBay. Thisfindingextends previouswork by Kuffner
et al. (2007),who found that lidar-derived rugositymeasured froma1m
DEM, using variedwindow sizes, was a statistically significant, butweak
predictor of coral reeffish species richness in Florida. This previouswork
was conducted in patch reef habitat that contained a limited range of
habitat complexities, and, therefore, may have not been representative
of ecological relationships at the ecosystem level. Several distincthabitat
types in a contiguous reef environment were incorporated in our study
and this allowed for the relationship of the fish assemblage to be
explored across a broad range of habitat complexities.

5.3. Implications for management of reef fish assemblages

Coral reef fishes demonstrate habitat utilization patterns across the
seascape (Appeldoorn et al., 2003; Christensen et al., 2003), and the
presence of structurally complex habitat may provide refuge from
predation and increased survivorship as fish move between habitat
types (Pittman et al., 2007a). An MPA should protect a range of
structural complexity and habitat types in order for fisheries
enhancement goals to be reached (Sladek Nowlis & Friedlander,

2004). The ability to predict fish assemblages across a range of benthic
habitat types represents an important step in allowing managers to
properly plan effective marine protected areas (Valesini et al., 2004).

Remotely sensed data can predict the fisheries potential of an area
(Purkis et al., 2008) and support optimal location and design of marine
protected areas (Monaco et al., 2007) by identifying specific areas that
offer great natural protection through structural complexity. We
established that lidar-derived rugosity was a good predictor of fish
biomass at all spatial scales examined. Several other studies have used
broad scale measures of habitat complexity to predict coral reef fish
assemblage metrics, such as species richness (Pittman et al., 2007b),
diversity and abundance (Purkis et al., 2008). Purkis et al. (2008) noted
stronger predictions from satellite data in larger-bodied fishes. This is
important to consider as fisheriesmanagement goals often involve the
protection of larger female fish inside MPA boundaries (Palumbi,
2004; Sladek Nowles & Friedlander, 2005). Larger fishes are valuable
because they are more fecund, and produce viable offspring (Berkeley
et al., 2004). If remote sensing provides data on habitat complexity at a
scale most relevant to the larger-bodied fishes the application of the
predictive species mapping may be ideal for selecting optimal sites for
fisheries replenishment and MPA design. The relationships between
lidar-derived rugosity and fish assemblage structure should be
established at other locations in Hawaii so that more robust predictive
mapping can be used to identify potential sites for future MPAs. The
next step is to scale-up this approach to see if these same fish–habitat
relationships exist elsewhere in Hawaii, and to determine if lidar-
derived rugosity can be used to predict fish assemblage structure and
ultimately prioritize areas for conservation and management.

6. Conclusions

The first goal of this study was to determine whether lidar
technology could provide effective rugositymeasures on a coral reef in
Hawaii. Lidar was found to provide valuable rugosity measures at our
study site and our findings extend prior work in Florida patch reefs
(Brock et al., 2004; Kuffner et al., 2007) to a contiguous coral reef
environment in Hawaii. The second goal of this study was to examine
the relationship between reef fish assemblage characteristics and
lidar-derived rugosity. An important step in applying lidar technology
for resource management applications is relating the lidar-derived
rugosity to various fish assemblage characteristics. We determined
that lidar technology can be utilized to study the ecological role of
habitat complexity on a coral reef in Hawaii. The results of our study
suggest that lidar-derived rugosity may be used as a surrogate for
various measures of fish assemblage structure, and this suggests that
lidar data has the potential to assist in prioritizing areas for
conservation and management. Expanding this work across the
Main Hawaiian Islands will allow us to see if remotely sensed lidar
data will provide relevant information at geographic scales commen-
surate with resource management efforts across the state of Hawaii.
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