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INTRODUCTION 

Eutrophication 
Primary productivity in many coastal systems is nitrogen (N) limited; although, 
phytoplankton productivity may be limited by phosphorus (P) seasonally or in portions of 
an estuary. Increases in loading of limiting nutrients to coastal ecosystems may lead to 
eutrophication (Nixon 1996). Anthropogenically enhanced eutrophication includes 
symptoms such as loss of seagrass beds, changes in algal community composition, 
increased algal (phytoplankton) blooms (Richardson et al. 2001), hypoxic or anoxic 
events, and fish kills (Bricker et al. 2003). 

Hypoxia 
Coastal hypoxia is a widespread environmental problem in the United States.  Forty out 
of one hundred thirty eight estuaries in the U.S. exhibit moderate to severe hypoxia 
(Bricker et al. 1999). Sustained or recurring low oxygen conditions can lead to faunal 
mortalities, food web alterations, loss of habitat, and impacts to fisheries.   

Much publicity, research and policy attention has been given to the extensive hypoxic 
zone in the northern Gulf of Mexico commonly referred to as the “Dead Zone.”  Bottom 
water oxygen concentrations of less than 2 mg/L form in large areas off the Louisiana 
and Texas coasts annually during the spring and summer.  The size of this hypoxic area 
averaged 8,300 km2 from 1985 to 1992 and increased to an average of 16,000 km2 from 
1993-2001 (Rabalais et al. 2002), with a maximum size of over 20,000 km2 in 2003 
(Rabalais 2008). The overall trend in hypoxia is increasing from 1985 to 2008 (Figure 1, 
Rabalais 2008). 

Previous studies have demonstrated that the size of the hypoxic zone during late summer 
is well correlated to riverine nitrogen loadings (Scavia et al. 2003).  Nutrient loadings 
stimulate phytoplankton production, which increases the biochemical oxygen demand of 
the system, leading to bottom water hypoxia.  While ecosystem level impacts of hypoxia 
are often difficult to quantify, previous studies have demonstrated habitat implications of 
low oxygen on shrimp and Atlantic croaker (Craig and Crowder, 2005) and that brown 
shrimp landings are negatively correlated with hypoxia in the region (Zimmerman and 
Nance 2001, O’Connor and Whitall 2007).   

In 1997, in response to this recurring ecological phenomenon, the Mississippi River/Gulf 
of Mexico Watershed Nutrient Task Force (2001) was established as a joint 
federal/state/tribal and stakeholder group to consider options for responding to Gulf of 
Mexico hypoxia. The Task Force agreed on a goal to reduce the 5-yr running average of 
hypoxic area to below 5,000 km2 by 2015 (Mississippi River/Gulf of Mexico Watershed 
Nutrient Task Force 2001). The action plan also suggests that a 30% reduction from the 
1980–1996 average nitrogen load would be needed to reach that goal. However, the 
model scenarios enumerated in Scavia et al. (2003) suggest that a 30% reduction might 
not be sufficient to reach this goal due to interannual variability in the system.  
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Sources of Nitrogen and Phosphorus 
Increases in human population, combined with growth in the industrial and agricultural 

sectors, has significantly altered the quantities and composition of nitrogen (N)-
containing pollutants released to the environment (Galloway et al. 1995; Vitousek et al. 

1997). Of particular concern is urban and suburban development in the near coastal zone.  

Point discharges (i.e., wastewater, industrial discharges, stormwater overflow discharges) 

as well as non-point sources (agricultural, urban runoff) associated with this development 

has led to an increase in N released into the coastal zone (Driscoll et al. 2003).  Previous 

studies have shown a strong correlation between human population and elevated riverine 

fluxes of N to estuaries (Peierls et al. 1991, Howarth et al. 1996, Castro et al. 2000).  

Atmospheric deposition of N (AD-N) has also been identified as a potentially important 

source of N for many coastal ecosystems (Valiela et al. 1992, Nixon 1996, Paerl et al. 

2002, Whitall et al. 2004).   


Anthropogenic sources of phosphorus include fertilizer (agricultural, golf course and 

lawn), animal wastes, yard clippings, soil erosion, and detergents/cleaning agents.  The 

agricultural sources of phosphorus include: agricultural fertilizer, animal waste, soil loss, 

manure spreading, and lagoon leakage (Barr Engineering 2004).   


In addition to being multiple source pollutants, nutrient pollution is often a multi-state 

and even international management issue because airshed and watershed boundaries also 

span political boundaries. Large watersheds with coastal drainages, such as Chesapeake 

Bay, Long Island Sound and the Mississippi River Basin, are influenced by the effects of 

urban and agricultural development many hundreds of miles inland.  Furthermore, some
	
estuaries, such as Tijuana Estuary watershed, which is co-located in the U.S. and Mexico, 

transcend international boundaries, making which makes management even more 

challenging. 


OBJECTIVE 

The purpose of this analysis is to examine the historical fluxes of N and P to the northern 

Gulf of Mexico and discuss the implications that this may have for primary productivity, 

hypoxia and management strategies. 


DATA SOURCES AND METHODS
	
Monthly riverine loading data are from US Geological Survey (USGS) gauging stations 

on the Mississippi (St. Francisville, LA) and Atchafalaya (Melville, LA) Rivers (Figure 

2). The period of record spans from July 1974 to June 2008 for the Mississippi and from
	
July 1979 to June 2008 for the Atchafalaya (USGS 2008).  Atmospheric deposition 

values, for 4 representative sites in the near coastal area, are from the National 

Atmospheric Deposition Program (NADP).  Fertilizer sales data are from the NOAA 

CADS database (NOAA 2007).  United States population data are from the U.S. Census 

Bureau (Envirocast 2007).  Because these data were not normally distributed (Shapiro-

Wilks test), non-parametric statistics were used to evaluate correlations (Spearmann’s 

Rho) and seasonal differences (Wilcoxon test) using JMP Statistical Software (SAS 

Institute). 
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RESULTS 
Long Term Trends in Riverine Loading 
In the Mississippi River, nitrogen species (TN, nitrate plus nitrite, TKN, ammonia) are 
generally decreasing (Figures 3-6).  Conversely, total phosphorus (TP) is increasing 
(Figure 7).  In the Atchafalaya River, TN, TKN and ammonia are decreasing (Figures 8-
10), while there is no trend in nitrate or TP.  Trends in the N:P ratios for the total loadings 
to the northern Gulf of Mexico (Mississippi and Atchafalaya Rivers combined) were 
analyzed as well. Ratios of TN:TP and DIN:DIP are both decreasing (Figure 13).  It 
should be noted that one can find short term (e.g. 1-3 year) trends in some constituents, 
but these should be viewed as acute patterns which may be driven by temporary shifts in 
climatology or nutrient inputs (e.g. Figure 14) which are not reflective of the long term 
trend (Figure 3). 

Seasonal Patterns in Riverine Loading 
There is significant seasonal variability in the monthly riverine loadings.  In the 
Mississippi River, all seasons for all constituents are significantly different (=0.05) from 
each other with the exception of summer and winter loads, which are not significantly 
different for the nitrogen species. Loads are generally significantly highest in the spring 
and lowest in the fall (Figure 15). In the Atchafalaya River (Figure 16), loadings for each 
constituent are generally highest in the spring and generally lowest in the fall and differ 
significantly by season. Exceptions to this are ammonia, where spring and winter are not 
significantly different but are greater than summer and fall loads, and TN and TP, where 
summer and winter loads are not significantly different from each other.  Ratios of 
TN:TP and DIN:DIP (Mississippi and Atchafalaya Rivers combined) were generally 
highest in the spring and lowest in the fall (Figure 17).  All seasons were significantly 
different (=0.05) for DIN:DIP and all seasons were significantly different for TN:TP, 
except for winter and fall, and, summer and spring. 

Covariation of Nutrient Loads 
The extent to which nutrient constituent loads co-vary may lend insight into the 
likelihood that they originate from the same sources.  If two constituents strongly co-vary 
they may be originating from the same source.  Alternatively, their source signals may be 
getting integrated over the large watershed area.  If two constituents are independent of 
each other, this would suggest that different sources, or that in stream processing, are 
driving the loading patterns. The monthly loading data reflect a variety of covariances 
between nutrient constituents (Figures 18 and 19).  For example, TN and TP are 
relatively well correlated, whereas ammonia and nitrate are not well correlated.  The 
degree of covariance for each constituent also varies between the Mississippi and 
Atchafalaya Rivers. Obviously, autocorrelation exists between some analytes, such as 
TN and nitrate because nitrate is a component of TN.   

Trends in Fertilizer Use 
Both N and P fertilizer use in the Mississippi River Basin increased from 1974 to 1991 as 
shown in Figures 20 and 21 (note: compiled fertilizer sales data from NOAA’s CADS 
ends at 1991). These patterns hold both for the basin as a whole as well as for the states 
in the basin which have been identified as contributing the majority of the nutrient load to 
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the Gulf (EWG, 2006). It is important to note that the temporal patterns in fertilizer use 
do not directly correspond to the observed riverine loads.  The unusual increase in N 
loading 1982-1984 (Figure 3) actually corresponds to a decrease in fertilizer use in the 
same time period (Figures 20 and 21).  This reinforces the concept that nitrogen is a 
multiple source pollutant.  Furthermore, this decoupling may indicate the importance of 
watershed processing, including potential groundwater impacts. 

Trends in Atmospheric Nitrogen Deposition 
Wet nitrogen deposition (National Atmospheric Deposition Program data) from four sites 
in the lower watersheds (Figure 22) show decreasing or relatively steady nitrogen 
deposition fluxes since the early 1980s (Figures 23-26).  These modest improvements 
may be related to the Clean Air Act Amendments of 1990.  It should be noted that NADP 
data are wet inorganic deposition (i.e. DIN in precipitation) only.  Patterns in organic N 
deposition and dry deposition (particles and gases) may be different, but substantial data 
for these fluxes are not available except in a few localized studies. 

Trends in Human Population 
Population can be used as a surrogate for wastewater treatment plant and septic system 
nutrient inputs (Castro and Driscoll 2002). The population of the Mississippi River Basin 
(including the Atchafalaya) increased by 18% from 1970 to 2000 (Figure 27).   

DISCUSSION 
Link to Hydrology 
Because nutrient loadings are predominantly from non-point sources, one would expect 
loadings to be tightly couple to riverine flow (Figures 28, 29).  However, only nitrogen 
loadings are significantly correlated to flow.  This may reflect significant differences in 
sources or in watershed transport processes between N and P. 

Stoichiometry 
The Redfield ratio (16 units of nitrogen to 1 unit of phosphorus) is an approximation of 
algal nutrient requirements and can vary depending on a variety of factors including: the 
stage of algal cell division, changes in light intensity or quality, or temperature (Correll 
1987). Even considering these limitations, measurement of nitrogen and phosphorus 
ratios in coastal waters provides a useful metric for evaluating the possible effects of 
increased loadings of these nutrients (Bowman et al. 2000). 

There has been some debate as to how to best calculate N:P ratios in riverine loadings to 
the northern Gulf of Mexico. Because N:P ratios are important from a phytoplankton 
response perspective, the ratio should only consider bioavailable N and P.  For this 
purpose, some experts (e.g. USEPA 2004) have argued that ambient DIN:DIP is the 
appropriate ratio, as inorganic N and P are most bioavailable to phytoplankton.  However, 
it has been well documented that urea and other fractions of organic N can be 
bioavailable to phytoplankton (Peierls and Paerl 1997, Pinckney et al. 1999).  Therefore, 
using DIN will significantly underestimate the total amount of bioavailable N.  Further 
complicating this matter is the fact that the measurements presented in this paper are 
riverine loads, not ambient offshore concentrations.  Because biogeochemical 
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transformations occur as the nutrients move downstream from the USGS gauging 
stations, considering only DIN and DIP will likely underestimate the total bioavailable N 
and P, as more nutrients are converted from recalcitrant forms to more bioavailable 
forms.  Conversely, examining only TN and TP will likely overestimate the total 
bioavailable N and P. 

Because of this uncertainty, this paper examines both DIN:DIP and TN:TP.  Not 
surprisingly, comparing the TN:TP and DIN:DIP ratios to the Redfield ratio yields 
different results. For DIN:DIP, loadings data suggest P limitation except in the fall when 
N is generally limiting.  However, TN:TP loadings data suggest N limitation.  
Furthermore, there are seasonal differences, especially for DIN:DIP which suggests P 
limitation, except in the fall. 

These differences, combined with the debate over how best to calculate N:P ratios in 
coastal waters, speaks to the need for better quantification of nutrient processing and 
biological utilization of nutrients, as well as more robust temporal and spatial ambient 
nutrient data from the Mississippi River Plume and shelf environments.   

Modeling Implications 
Quantitative models exist which can annually predict the size of this area of hypoxia.  
One of these model is based on Scavia et al. (2003) and was constructed using 18 years of 
field data. The model uses a suite of input parameters including: organic matter load 
(which is derived from USGS riverine nitrogen loading values from the Mississippi and 
Atchafalaya Rivers), a first order oxygen reaeration constant, a first order organic matter 
decomposition and downstream advection of sub pycnoclinal waters (Figure 30).  
Loading data from the USGS stations at St. Francisville and Melville are used for the 
loadings for the Mississippi and Atchafalaya Rivers, respectively. May and June riverine 
loading data (total nitrogen) is used to determine the biochemical oxygen demand load 
because nitrogen is often considered to be the limiting nutrient for algal production 
(Justic et al. 1997). Because TN and TP are strongly correlated (Figures 18 and 19), the 
model could be modified to be run using TP loads.  There is considerable uncertainty in 
the advection term and this uncertainty is quantified via Monte Carlo analysis.  The 
model predicts the length of the hypoxic zone, which is well correlated to the total 
hypoxic area (Figure 31). This model could be used as a management tool to evaluate the 
relative effectiveness of proposed management strategies for reducing nutrient pollution 
to the northern Gulf. 

Management Implications 
Reducing one nutrient alone (either N or P) will not solve the problem because the 
system is overloaded with nutrients.  For example, focusing on only nitrogen will only 
lead to switching the system from P limitation to N limitation.  Coastal nutrient pollution 
is a multi-source problem, and in the case of N a multi-media (air and water) problem, 
which is manifested in a cascade of environmental effects (Galloway et al. 2003).  The 
complex nature (multi-media, multi-source, multi-state, multi-effect) of coastal nutrient 
pollution necessitates the development of integrated management plans.  Unfortunately, 
in the U.S., air management legislation (e.g. Clean Air Act) and management of coastal 
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waters (e.g. Clean Water Act, Coastal Zone Management Act) are not coordinated.  The 
Total Maximum Daily Load (TMDL) requirements under the Clean Water Act and other 
state level management plans, which have been designed to address coastal N pollution, 
often do not adequately consider the role of AD-N in estuarine N loading (NCDENR 
1999, NYDEC and CTDEP 2000). Similarly, air quality standards have failed to 
consider the impact of atmospheric N emissions on coastal water quality (e.g. secondary 
standards). It is strongly recommended that management of this system be approached in 
an integrated manner that recognizes contributions from various sources (i.e. point 
sources, atmospheric deposition and other non-point) and across state and international 
borders (the Mississippi River watershed contains 31 states and extends into Canada). 
The Mississippi River/Gulf of Mexico Watershed Nutrient Task Force should continue to 
work to integrate multi-state programs among agencies responsible for air and coastal 
waters management.  

ACKNOWLEDGMENTS 
Support for this work was provided by NOAA’s National Centers for Coastal Ocean 
Science. The author would like to thank B. Aulenbach (USGS) for his cooperation in 
supplying USGS riverine loading data and two reviewers, S. Bricker and K. Kimbrough, 
for their valuable comments which greatly improved the manuscript. 

6 




 

 

 

 
 

 
 

 

 

 

 

 

 

 
  

 

REFERENCES 

Barr Engineering Company for Minnesota Pollution Control Agency.  Detailed 
Assessment of Phosphorus Sources in Minnesota Watersheds. February 2004. 26 
January 2005. Available online at: 
http://www.pca.state.mn.us/hot/legislature/reports/phosphorus-report.html. 

Bowman, M.L., J. Gerritsen, G, Gibson, B. Synder.  2000. Estuarine and Coastal Marine 
Waters: Bioassessment and Biocriteria Technical Guidance. Available online at: 
http://www.epa.gov/waterscience/biocriteria/States/estuaries/bio_ch3.pdf 

Bricker, S.B., J.G. Ferreira, and T. Simas. 2003. An Integrated Methodology for  
Assessment of Estuarine Trophic Status. Ecol. Modeling 169: 39-60. 

Bricker S., C. Clement, D. Pirhalla, S. Orlando, S. Farrow.  1999. National 
Estuarine Eutrophication Assessment: Effects of Nutrient Enrichment in the 
Nation's Estuaries.  NOAA, National Ocean Service, Special Projects Office and 
the National Centers for Coastal Ocean Science.  Silver Spring, MD.  

Castro, M., C. Driscoll, T. Jordan, W. Reay, W. Boynton, S. Seitzinger, R. Styles, W.  
Boynton, and J. Cable. 2000. Contribution of atmospheric deposition to the total 
nitrogen loads of thirty-four estuaries on the Atlantic and Gulf Coast of the United 
States. In: Valigura, R., Editor, 2000. Atmospheric nitrogen deposition in coastal 
waters. Coastal Estuarine Science Series vol. 57, AGU Press, Washington (DC), 
pp. 77–106. 

Castro M.S., C.T. Driscoll. 2002. Atmospheric nitrogen deposition to estuaries in the  
mid-Atlantic and northeastern United States. Environmental Science and 
Technology 36: 3242–3249. 

Craig, K. and L. Crowder. 2005. Hypoxia-induced habitat shifts and energetic  
consequences in Atlantic croaker and brown shrimp on the Gulf of Mexico shelf.  
Mar. Ecol. Prog. Series 294: 79-94.  

Driscoll, C., D. Whitall, J. Aber, E. Boyer, M. Castro, C. Cronan, C. Goodale, P.  
Groffman, C. Hopkinson, K. Lambert, G. Lawrence and S. Ollinger. 2003. 
Nitrogen pollution in the northeastern United States: Sources, effects and 
management options.  BioScience 53: 357-374. 

Correll, D.L. 1987. Nutrients in Chesapeake Bay. Pages 298-320 in S.K. Majumdar, L.W. 
Hall, Jr. and H.M. Austin (editors). Contaminant Problems and Management of 
Living Chesapeake Bay Resources. Pennsylvania Academy of Science. 

Envirocast 2007. National Watersheds: Mississippi River Basin. Available online at: 
http://wrc.iewatershed.com /index.php?pagename=ow_regionalWatersheds_07 

7 


http:http://wrc.iewatershed.com
http://www.epa.gov/waterscience/biocriteria/States/estuaries/bio_ch3.pdf
http://www.pca.state.mn.us/hot/legislature/reports/phosphorus-report.html


 

 

 
 

 

 
 

 

 

 

 
 

 
 

 

(EWG) Environmental Working Group. 2006. Dead in the Water. 
Available online at: http://www.ewg.org/reports/deadzone/top10.php 

Galloway, J. N., W. H. Schlesinger, H. Levy II, A. Michaels, and J. L. Schnoor. 1995.  
Nitrogen Fixation: Anthropogenic Enhancement-Environmental Response, Global 
Biogeochem. Cycles 9:235–252.  

Galloway, J. N., J. D. Aber, J. W. Erisman, S. P. Seitzinger, R. W. Howarth, E. B.  
Cowling, and B. J. Cosby. 2003. The nitrogen cascade. Bioscience 53:341-356. 

R. W. Howarth, G. Billen, D. Swaney, A. Townsend, N. Jaworski, K. Lajtha, J. A.  
Downing, R. Elmgren, N. Caraco, T. Jordan, F. Berendse, J. Freney, V. 
Kudeyarov, P. Murdoch and Zhu Zhao-Liang. 1996.  Regional Nitrogen Budgets 
and Riverine N & P Fluxes for the Drainages to the North Atlantic Ocean: Natural 
and Human Influences Biogeochemistry 35:75-139.  

Justic, D., N. Rabalais, E. Turner.  1997. Impacts of climate change on net productivity  
of coastal waters: implications for carbon budgets and hypoxia. Climate Research 
8: 225-237. 

Mississippi River/Gulf of Mexico Watershed Nutrient Task Force. 2001. Action Plan for  
Reducing, Mitigating and Controlling Hypoxia in the Northern Gulf of Mexico. 
Mississippi River/Gulf of Mexico Watershed Nutrient Task Force. Washington, 
D.C. Available online at: 

http://www.epa.gov/msbasin/taskforce/pdf/actionplan.pdf 


(NADP) National Atmospheric Deposition Program (NRSP-3). 2008.  
NADP Program Office, Illinois State Water Survey, 2204 Griffith Dr., 
Champaign, IL 61820. Available online at: http://nadp.sws.uiuc.edu/ 

(NCDENR) North Carolina Department of Environment and Natural Resources. 1999. 
Total Maximum Daily Load for Total Nitrogen to the Neuse River Estuary, NC.  
Available online at: http://h2o.enr.state.nc.us/mtu/aboutTMDL.html 

(NYDEC and CTDEP).  New York Department of Environmental Conservation and CT  
Department of Environmental Protection. 2000.  A total maximum daily load 
analysis to achieve water quality standards for dissolved oxygen in Long Island 
Sound; 2000. Available online at: http://dep.state.ct.us/wtr/index.htm 

(NOAA) National Oceanic and Atmospheric Administration, 2007. NOAA’s National  
Coastal Assessment and Data Synthesis.  Available online at: 
http://coastalgeospatial.noaa.gov/ 

Nixon S, J. Ammerman, L. Atkinson, V. Berounsky, G. Billen, W. Boicourt,  

8 


http://dep.state.ct.us/wtr/index.htm
http:http://coastalgeospatial.noaa.gov
http://h2o.enr.state.nc.us/mtu/aboutTMDL.html
http:http://nadp.sws.uiuc.edu
http://www.epa.gov/msbasin/taskforce/pdf/actionplan.pdf
http://www.ewg.org/reports/deadzone/top10.php


 

 
 

 
 

 

 

 

 
 

 
 

 

 

 

 
 

 
 

W. Boynton, T. Church, D. Ditoro, R. Elmgren, J. Garber, A. Giblin, R. Jahnke, 
N. Owens, M. Pilson, S. Seitzinger.  1996. The fate of nitrogen and phosphorus at 
the land-sea margin of the North Atlantic Ocean.  Biogeochemistry 35: 141-180.  

O'Connor, T. and D. Whitall. 2007. Linking Hypoxia to Shrimp Catch in the Northern  
Gulf of Mexico. Marine Pollution Bulletin 54: 460–463. 

Peierls, B. and H. Paerl. 1997. Bioavailability of atmospheric organic nitrogen  
deposition to coastal phytoplankton. Limnol. Ocean. 42: 1819-l 823 

Peierls, B. L., N. F. Caraco, M. L. Pace, and J. J. Cole.  1991. Human influence on river  
nitrogen. Nature 350:386-387. 

Paerl , H. W., R.L. Dennis and D. Whitall.  2002. Atmospheric deposition of  
Nitrogen: implications for nutrient over-enrichment of coastal waters. Estuaries 
25:677–693. 

Pinckney, J. L., H. W. Paerl and M. B. Harrington. 1999.  Responses of the 
phytoplankton community growth rate to nutrient pulses in variable estuarine 
environments. Journal of Phycology 35:1455-1463. 

Rabalais, N, E. Turner, D. Scavia. 2002. Beyond science into policy: Gulf of  
Mexico Hypoxia and the Mississippi River.  BioScience 52:129-142. 

Rabalais, N. 2008. Hypoxia in the northern Gulf of Mexico.  
Available online at: http://www.gulfhypoxia.net/results/ 

Richardson T, J. Pinckney, H. Paerl. 2001. Responses of estuarine phytoplankton 
communities to nitrogen form and mixing using microcosm bioassays.  Estuaries 
24: 828-839. 

Scavia, D., N. Rabalais, E. Turner, D. Justic, W. Wiseman, Jr.  2003. 
Predicting the response of Gulf of Mexico hypoxia to variations in Mississippi 
River nitrogen load. Limnology and Oceanography 48: 951-956. 

(USEPA) U.S. Environmental Protection Agency. 2004. Review of Issues Related to  
Gulf of Mexico Hypoxia. US EPA Region 4. Atlanta, Georgia.  Available online 
at: http://www.epa.gov/msbasin/taskforce/2006symposia/Reg4whitepaper0404draft.pdf

 (USGS) U.S. Geological Survey. 2008.  New Nutrient Flux Estimates for 2008. 
Available online at: http://co.water.usgs.gov/hypoxia/html/nutrients_new.html 

Valiela, K. Foreman, M. LaMontagne, D. Hersh, J. Costa, P. Peckol, B. DeMeo- 
Andreson, C. D’Avanzo, M. Babione, C. Sham, J. Brawley and K. Lajtha. 1992. 
Couplings of watersheds and coastal waters: sources and consequences of nutrient 
enrichment in Waquoit Bay, Massachusetts. Estuaries 15: 443–457 

9 


http://co.water.usgs.gov/hypoxia/html/nutrients_new.html
http://www.epa.gov/msbasin/taskforce/2006symposia/Reg4whitepaper0404draft.pdf
http://www.gulfhypoxia.net/results


 

 

Whitall, D., M. Castro and C. Driscoll. 2004. Evaluation of management  
strategies for reducing nitrogen loadings to four U.S. estuaries. Science of the 
Total Environment 333: 25-36. 

Zimmerman, R.J., and L. M Nance. 2001. Effects of hypoxia on the shrimp fishery of  
Louisiana and Texas. In: N.N., Rabalais, R. E. Turner  Coastal Hypoxia: 
Consequences for Living Resources and Ecosystems. pp 293-310 American 
Geophysical Union: Washington, DC. 

10 




  
 

Figure 1: Annual hypoxia in the northern Gulf of Mexico 
(Rabalais 2008). 

  
  

Figure 2: Location of USGS riverine monitoring stations for the 
Mississippi (St. Francisville) and Atchafalaya (Melville) Rivers. 

   
   

   

igure 3: Time series of monthly total nitrogen (TN) loadings for the 
ississippi River from 1974-2008.  Line represents the linear trend, 
ut does not imply statistical significance. 

   
  

Figure 4: Time series of monthly nitrate + nitrite loadings for the 
Mississippi River from 1974-2008. Line represents the linear trend, 
but does not imply statistical significance. 

   
 

    

Figure 5: Time series of monthly total Kjeldahl nitrogen (TKN) 
loadings for theMississippi River from 1974-2008. Line 
represents the linear trend, but does not imply statistical 
significance. 

   
   

Figure 6: Time series of monthly ammonia loadings for the Mississippi 
River from 1974-2008.  Line represents the linear trend, but does not 

imply statistical significance. 

F
M
b

11 



Figure 7: Time series of monthly total phosphorus (TP) loadings for 
the Mississippi River from 1974-2008.  Line represents the linear 
trend, but does not imply statistical significance. 

Figure 8: Time series of monthly total nitrogen (TN) loadings for 
the Atchafalaya River from 1979-2008.  Line represents the linear 
trend, but does not imply statistical significance. 

Figure 9: Time series of monthly total Kjeldahl nitrogen (TKN) 
loadings for the Atchafalaya River from 1979-2008.  Line 
represents the linear trend, but does not imply statistical 
significance.

Figure 10: Time series of monthly ammonia loadings for the 
Atchafalaya River from 1979-2008.  Line represents the linear trend, 
but does not imply statistical significance.

Figure 11: Time series of monthly nitrate + nitrate loadings for 
the Atchafalaya River from 1979-2008.  Line represents the linear 
trend, but does not imply statistical significance.

Figure 12: Time series of monthly total phosphorus (TP) loadings 
for the Atchafalaya River from 1979-2008.  Line represents the linear 
trend, but does not imply statistical significance.12



Figure 13a:Time series of monthly molar ratio of dissolved 
inorganic nitrogen (DIN) to dissolved inorganic phosphorus (DIP) 
in combined loadings for the Mississippi and Atchafalaya Rivers 
from 1979-2008 

Figure 13b: Time series of monthly molar ratio of total nitrogen (TN) 
to total phosphorus (TP) in combined loadings for the Mississippi 
and Atchafalaya Rivers from 1979-2008.  Line represents the linear 
trend, but does not imply statistical significance.

Figure 14: Time series of monthly total nitrogen (TN) loadings for
the Mississippi River from 1993-1994. 

 

Figure 15: Seasonal mean loading of nitrate + nitrite, total Kjeldahl
nitrogen (TKN), ammonia, total phosphorus and total nitrogen for the
Mississippi River from 1974-2008.  All seasons for all constituents are
significantly different (Wilcoxon, =0.05) from each other with the
exception of summer and winter loads, which are not significantly
different for the nitrogen species.

Figure 16: Seasonal mean loading of nitrate + nitrite, total Kjeldahl nitrog
(TKN), ammonia, total phosphorus and total nitrogen for the Atchafalaya 
River from 1979-2008.  Loadings for each constituent are generally highe
in the spring and generally lowest in the fall and differ significantly by 
season (Wilcoxon, =0.05).  Exceptions to this are ammonia, where sprin
and winter are not significantly different but are greater than summer and
fall loads, and TN and TP, where summe
significantly different from each other.
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Figure 17: Seasonal mean ratio of total nitrogen (TN) to 
otal phosphorus (TP) for the combined loadings of the 
ississippi and Atchafalaya Rivers from 1974-2008. All 
easons were significantly different (Wilcoxon, =0.05) for 
IN:DIP and all seasons were significantly different for 
N:TP, except for winter and fall, and, summer and spring.
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Figure 18: Spearman correlations of Nitrate plus Nitrite, TKN, 
ammonia, TP and TN loadings for the Mississippi River for 
the period 1974 to 2008.

Figure 19: Spearman correlations of Nitrate plus Nitrite, 
ammonia, TKN, TP and TN loadings for the Atchafalaya 
River for the period 1979 to 2008.

Figure 20: Sale of nitrogen and phosphorus fertilizers in the 
Mississippi River watershed for the period 1974 to 1991. From the 
NOAA CADS database (2007).

Figure 21: Sale of nitrogen and phosphorus fertilizers in the “large 
source states” of Mississippi River watershed for the period 1974 
to 1991. From the NOAA CADS database (2007).  These states 
contain high polluting counties which account for 15% of the 
watershed area and 80% of the N loading (EWG, 2006).  States 
include: Arkansas, Illinois, Indiana, Iowa, Kentucky,  Louisiana, 
Michigan, Minnesota, Mississippi, Missouri, Nebraska, Ohio, 
Oklahoma, South Dakota, Tennessee and Wisconsin.

Figure 22: Location of National Atmospheric Deposition Program
wet deposition monitoring sites in the study area.

Figure 23: Wet inorganic nitrogen deposition from National 
Atmospheric Deposition site LA12 (Iberia Parish, Louisiana).  The 
trend line is composed of a three-year, centered, weighted-moving 
average value.  Points depicted with triangles did not meet the 
NADP criteria for completeness (NADP, 2008) and are not included 
in the trend line.
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Figure  24: Wet inorganic nitrogen deposition from National  
Atmospheric Deposition  site LA30 (Washington Parish Parish, 
Louisiana).  The  trend line is composed  of a three-year, centered, 
weighted-moving average  value.  Points  depicted  with triangles did no
meet  the NADP criteria  for completeness  (NADP, 2008) and are not 
included in the trend line. 

t 

Figure  25: Wet inorganic nitrogen deposition from National  
Atmospheric Deposition  site MS10 (Hinds County, Mississippi).   
The trend line is  composed of a three-year, centered,  
weighted-moving average  value.   Points depicted  with triangles  
did not meet  the NADP criteria for completeness (NADP, 2008)  
and are not included in the trend line. 

Figure  27:  Human population for the Mississippi River Basin 
(including  Atchafalaya watershed).  From U.S. C ensus data 1970 - 
2000.

Figure  26: Wet inorganic nitrogen deposition from National  
Atmospheric Deposition  site TX21 (Gregg County, Texas).  The 
trend line is  composed of  a three-year,  centered, weighted-moving  
average  value.   Points depicted  with triangles did not meet the  
NADP criteria  for completeness (NADP, 2008) and are not included 
in the trend line. 

Figure 28: Relationship  between annual  TN load and average  flow  
for the Mississippi River. Line re presents the l inear trend, but 
does not imply  statistical si gnificance.  Spearman rank correlation 
coefficient is significant at =0.05. 

Figure  29: Relationship between annual TP load  and  average flow  
for the Mississippi River. Line re presents the l inear trend, but 
does not imply  statistical si gnificance.  Spearman rank correlation 
coefficient is not significant at =0.05. 
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Figure  30: Schematic of hypoxia model. Figure  31: Relationship between hypoxic zone  length  and 
hypoxic zone area. 
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